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Generalized families of surfaces and saturated sets

A family {X:}ic(0,1), Tt C M, is a generalized family of surfaces (GFS) if:
@ Y, is a surface except for a finite set t € T C [0, 1].
@ There exists a finite set P C M such that X, \ P is a surface for all t € T.
o t i+ H?(X;) is continuous.

@ t+— X, is continuous in the Hausdorff topology.
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Generalized families of surfaces and saturated sets

A family {X:}ic(0,1), Tt C M, is a generalized family of surfaces (GFS) if:
@ Y, is a surface except for a finite set t € T C [0, 1].

@ There exists a finite set P C M such that X, \ P is a surface for all t € T.
o t i+ H?(X;) is continuous.

@ t+— X, is continuous in the Hausdorff topology.

v

Let ¢(t,x) : [0,1] x M — M be an isotopy. If {¥:} is a GFS, then {¢(t,%;)} is also a GFS. )

A collection of GFS'’s A is a saturated set if it is closed under the previous operation.
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Inf max and minimizing sequences

Given {¥;} € A, we define:
F{Ze}) = max H2 (%)

A fF = inf 2(x
molN) ==, gy PO
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Inf max and minimizing sequences

Given {¥;} € A, we define:

F{X:}) = max H? (L)

A fF = inf 2(x
o) =R = I e P )

A sequence {¥;}" is minimizing if F({X:}") — mg(A).

A sequence of slices {7 } is a min-max sequence if H?(X7) — mo(N).

To obtain minimal surfaces, we need to find a A such that mg(A) > 0. J
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Constructing an appropriate saturated set

Let f : M — [0,1] be a Morse function on M. Then, the slices >, := f () form a GFS. }
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Constructing an appropriate saturated set

Let f : M — [0,1] be a Morse function on M. Then, the slices >, := f () form a GFS. J

Moreover, if A is the smallest saturated set containing {>.}, mg(A) > 0.

Proof: Given any {I'+} € A, there exists ¢ such that ', = 9(t, X¢).

Let Uy = f~1([0,t)), Vi = 3(t, Ut). The volume Vol(V;) is continuous, and moreover
Vol(Vp) = 0, Vol(V4) = Vol(M).
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Constructing an appropriate saturated set

Let f : M — [0,1] be a Morse function on M. Then, the slices >, := f () form a GFS. J

Moreover, if A is the smallest saturated set containing {>.}, mg(A) > 0.

Proof: Given any {I'+} € A, there exists ¢ such that ', = 9(t, X¢).

Let Uy = f~1([0,t)), Vi = 3(t, Ut). The volume Vol(V;) is continuous, and moreover
Vol(Vp) = 0, Vol(V4) = Vol(M).

In particular, there exists Vi whose volume is Vol(M)/2. By the isoperimetric inequality and
by definition of F({I'+}),
0 < c(M) <HA(Ts) < F({T+}),

and so mg(A) > ¢(M) > 0.
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Theorem [Simon-Smith]

Let M be a closed Riemannian 3-manifold. Given any saturated set A such that mg(A) > 0,

there exists a min-max sequence converging to a embedded minimal surface with area
mo(/\)
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Theorem [Simon-Smith]

Let M be a closed Riemannian 3-manifold. Given any saturated set A such that mg(A) > 0,
there exists a min-max sequence converging to a embedded minimal surface with area
mo(/\)

We will define a space with good compactness properties: the space of varifolds.
In this space, min-max sequences will have a limit (up to subsequences).

We will find an appropriate min-max sequence converging to a minimal surface.
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Regular surfaces as linear operators

Given a vector space, we define the 2-Grassmannian G(V') as the set of all its linear
subspaces of dimension 2.
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Given a vector space, we define the 2-Grassmannian G(V') as the set of all its linear
subspaces of dimension 2.

Given an open set U of a manifold M, we define the 2-Grassmannian G(U) of U as the
manifold given by

G(U):= [ 6(TMm).

xelU
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Regular surfaces as linear operators

Given a vector space, we define the 2-Grassmannian G(V') as the set of all its linear
subspaces of dimension 2.

Given an open set U of a manifold M, we define the 2-Grassmannian G(U) of U as the
manifold given by

G(U):= [ 6(TMm).

xelU

Any surface ¥ C U with finite area induces a (non negative) bounded linear operator on
Ce(G(V)):

o(x,7) € C(G(U)) —> /Z o, TX)dH?
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Varifolds: a weak notion of surfaces

We define a varifold V in U as any non-negative bounded linear operator on C.(G(U)). J
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By Riesz Theorem, we can identify each varifold with a Radon measure such that, given
p € C(G(U)),
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We define a varifold V in U as any non-negative bounded linear operator on C.(G(U)).

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given

o€ C(G(V)),
V() = /G 7Y

Moreover, there exists a unique measure || V||, called the mass measure, defined on U, and
such that given ¢ € C.(U),

/ P V() = / p(x)dV (x, 7).
U G(U)

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 11/41



Varifolds: a weak notion of surfaces

We define a varifold V in U as any non-negative bounded linear operator on C.(G(U)).

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given

o€ C(G(V)),
V() = /G 7Y

Moreover, there exists a unique measure || V||, called the mass measure, defined on U, and
such that given ¢ € C.(U),

/ P V() = / p(x)dV (x, 7).
U G(U)

If X is a surface and Vi is its associated varifold, then || Vx||(U) is the area of X in U.
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The space of varifolds and its compactness properties

We denote by V(U) the set of varifolds in U.

We endow V(U) with the weak-* topology.
Let C > 0 be a constant. Then, the set of varifolds given by

{vev() : |Vii(U) < ¢}

is metrizable and compact.
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The space of varifolds and its compactness properties

We denote by V(U) the set of varifolds in U.

We endow V(U) with the weak-* topology.
Let C > 0 be a constant. Then, the set of varifolds given by
{Vev) : [VI(U) < C}

is metrizable and compact. In particular, any sequence of varifolds with uniformly bounded
mass has a convergent subsequence.
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First variation and stationary varifolds

Let f : U — U’ be a diffeomorphism and V € V(U). Then, f induces a varifold 7,V & V(U’).J
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Let f : U — U’ be a diffeomorphism and V € V(U). Then, f induces a varifold 7,V & V(U’).J

Given a vector field x, let ¢, (t, x) be the isotopy generated by Y, i.e., %—f = x(v).
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First variation and stationary varifolds

Let f : U — U’ be a diffeomorphism and V € V(U). Then, f induces a varifold 7,V & V(U’).J
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First variation and stationary varifolds

Let f : U — U’ be a diffeomorphism and V € V(U). Then, f induces a varifold 7,V & V(U’).J

Given a vector field x, let ¢, (t, x) be the isotopy generated by Y, i.e., %—If = x(v).

We define the first variation of a varifold V w.r.t. x as

BVI00 = (e JaVID)

We say that V is stationary if [0 V](x) = 0 for every field .
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Let {¥;}" be a minimizing sequence, and consider a certain min-max sequence {¥{ }. Does
this converge to anything?
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Finding stationary varifolds

Let {¥;}" be a minimizing sequence, and consider a certain min-max sequence {¥{ }. Does
this converge to anything?

By compactness, a subsequence must converge to a certain varifold V with mass mg(A).
However, V' need not be stationary!

Theorem (Pull-tight process)

There exists a minimizing sequence {I';}" such that any min-max sequence {I'] } converges
to a stationary varifold.

Idea of the Theorem: For each varifold we will define an isotopy v¥y/(t, x) such that:
o If V is stationary, then ¢y(t,-) is the identity map.
o Otherwise, V' := (¢y(1,-))4V has strictly less mass than V.
@ The difference between ||V'||(M) and ||V||(M) depends uniformly on the distance

between V and the set of stationary varifolds.
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Pull-tight process

Let X be the set of varifolds with mass less or equal
than 4mgp, which is compact and metrizable.
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Pull-tight process

Let X be the set of varifolds with mass less or equal
than 4mgp, which is compact and metrizable.

Let Vo C X be the (compact) set of stationary
varifolds in X, and

V
Vi i ={V : 2—k+l > AV, V) > 2_k} '
The sets Vi are also compact.
Vo
Vs
Voo
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Pull-tight process

Let X be the set of varifolds with mass less or equal
than 4mgp, which is compact and metrizable.

Let Vo C X be the (compact) set of stationary
varifolds in X, and

Vi={V : 2751 >V, V) > 27K

The sets Vi are also compact. v
2

There exists ¢ = c(k) > 0 such that, for each
V € Vy there exists xy with |[xv| <1 and Vs

[6V]I(xv) < —c(k).
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Pull-tight process

By compactness, we can take a finite set of
varifolds V¥ C V, fields x* and balls B(
s.t.:

VE k)
100 . PR -
2N N s ~
’, / s \
! Y ’ ° / \
n T —
If V € B(VKX, k), then [§V](xi) < —c(k)/2 A SN U SEES I S
o S i ,I’I ’ then X, —C . T(«\’ AN Li<” 7 \/‘i\
SN /;’ RN ‘(/ AN
N 7 \\ /‘/, \\}// N4 \‘
~! Pie QN
e ] .1 T ‘2
\ e n \,I\~__—’,
\ s \
\ N 7 7
S AN RARN //\\\ ,/
Vo-% N S ~oLt
B L RN
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Pull-tight process

By compactness, we can take a finite set of
varifolds VX C V, fields x¥ and balls B(VX, rk) .

! - RN 7 RN -
s.t.: - . <
L 1 Ve ! !

o If V€ B(VK, rk), then [0V](xi) < —c(k)/2. U P A SR

o B(V¥X, rk/2) cover Vy. V11 A SRR

. ~Lo-- o, So__ e

' St T !

T N N \\\/
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Pull-tight process

By compactness, we can take a finite set of
varifolds V¥ C V, fields x* and balls B(VX, rk) o
s.t.: K S \74/\ /\(\__\\
o If V e B(VK, rk), then [6V](x;) < —c(k)/2.
o B(V¥X, rk/2) cover Vy. % ‘ I,/“\\;):'?:’_V\)‘%\,{// ) .
Let of € CC(Brlf‘(Vik)) be a partition of the unit, ) :\\ //' A :‘\ '
and define H: X — C*°(M, TM) as \17'2)\“"'\’V\/\‘"'\A/‘*-'\’\’\/i"
H(V) =) e (V)X
ik 2
Voo

Notice that H is continuous.
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Pull-tight process

There exist constants C = C(k) and a time

T = T(k) such that P
IV(TI(M) < [V(O)I(M) — (k) — T

for every V € Vi, where V(T) is the evolution of Vlﬂk ,'/Ai\;,’ y(’ |

V = V/(0) under the field H(V). RN A e
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Pull-tight process

There exist constants C = C(k) and a time
T = T(k) such that P
IVTIIM) < [[V(0)[I(M) — C(k) T T
P R S B S U I S
\/\,‘ // /\A/\ \\ /, v\'f\ // \\\
for every V € Vi, where V(T) is the evolution of V11 SN
V = V/(0) under the field H(V). RN A e
Now, let {¥:}" be a minimizing sequence. Then, 172“A
we can define a tighter minimizing sequence:
Let '] :=X?(T). Then, the sequence {I';}" is Vs
minimizing and each min-max sequence converges
to a stationary varifold. Vo
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Almost minimizing surfaces

Lete >0, UC M and X C U. We will say that the surface ¥ is e-almost minimizing if there
does not exist any isotopy 9 supported in U such that:

o H2(p(t, X)) < H3(X) + § forall t € [0,1].
o H2(¥(1,X)) < H3(X) —e.
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Almost minimizing surfaces

Lete >0, UC M and X C U. We will say that the surface ¥ is e-almost minimizing if there
does not exist any isotopy 9 supported in U such that:

o H2(4(t, %)) < HA(T) + & forall t € [0,1].
o H2(Y(1,%)) < H3(X) —e.
A sequence {¥"} is almost minimizing if each £" is £,-almost minimizing, and ¢, — 0.
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Almost minimizing surfaces

Lete >0, UC M and X C U. We will say that the surface ¥ is e-almost minimizing if there
does not exist any isotopy 9 supported in U such that:

o H2(4(t, %)) < HA(T) + & forall t € [0,1].
o H2(Y(1,%)) < H3(X) —e.
A sequence {¥"} is almost minimizing if each £" is £,-almost minimizing, and ¢, — 0.

Let AN (x, r) be the set of annuli centered in x € M with outer radius less than r.

A sequence {¥"} is almost minimizing in small annuli if there exists r : M — (0, c0) such that
{¥"} is almost minimizing in every An € AN (x, r(x)). J
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Replacements

Let V be a stationary varifold and U C M. We say that V' is a replacement of V in U if:
e V' is stationary and || V| = ||V']|.
o V=V on M\U.

o ¥ := V'|y is a embedded stable minimal surface with ¥ \ ¥ € 9U.
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Replacements

Let V be a stationary varifold and U C M. We say that V'’ is a replacement of V in U if
e V' is stationary and || V| = ||V']|.
o V=V on M\U.

o ¥ := V'|y is a embedded stable minimal surface with ¥ \ ¥ € 9U.

We say that V' has the good replacement property if:
@ V has a replacement V' in any An € AN (x, r(x)).
@ V/ has a second replacement V" in any An € AN (y, r(y)).
o V" has a third replacement V" in any An € AN (z, r(2)).
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Regularity results

Theorem 1 (GRP implies minimality)

If V' has the good replacement property, then it is an embedded minimal surface.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024



Regularity results
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If V' has the good replacement property, then it is an embedded minimal surface.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence {¥"} which is almost minimizing in small annuli and
converges to a stationary varifold V.
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Regularity results

Theorem 1 (GRP implies minimality)

If V' has the good replacement property, then it is an embedded minimal surface.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence {¥"} which is almost minimizing in small annuli and
converges to a stationary varifold V. Moreover, given any small annulus An, £"|a, is a
smooth surface for sufficiently large n.

Theorem 3 (a.m. min-max sequence has GRP)

The varifold V of the previous Proposition has the good replacement property. In particular,
V is an embedded, minimal surface with area mg(A).
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Talk structure

© Regularity analysis of limit varifolds
@ Theorem 1: GRP implies minimality
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Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J
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If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J

We fix some x € M, p > 0 and consider the annulus
Ani = An(x, p,2p).

May - June, 2024

Alberto Cerezo Cid (IMUS - UGR)



Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J

We fix some x € M, p > 0 and consider the annulus
Ani = An(x, p,2p).

We take a good replacement V'’ of V in Any, and
define ¥/ := V/| 4,
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Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J

We fix some x € M, p > 0 and consider the annulus
Ani = An(x, p,2p).

We take a good replacement V'’ of V in Any, and
define ¥/ := V/| 4,

Given s < p < t < 2p, we consider a further b
replacement V" of V' in Any(s) := An(x,s, t), and
Z” = V‘Ang-
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Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J

We fix some x € M, p > 0 and consider the annulus
Ani = An(x, p,2p).

We take a good replacement V'’ of V in Any, and
define ¥/ := V/| 4,

Given s < p < t < 2p, we consider a further b
replacement V" of V' in Any(s) := An(x,s, t), and
Z” = V‘Ang-

We have two surfaces >’ and >”.
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Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable. J

We fix some x € M, p > 0 and consider the annulus
Ani = An(x, p,2p).

We take a good replacement V'’ of V in Any, and
define ¥/ := V/| 4,

Given s < p < t < 2p, we consider a further b
replacement V" of V' in Any(s) := An(x,s, t), and
Z” = V‘Ang-

We have two surfaces ' and . Do they
coincide?
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Gluing two minimal surfaces

Let v := %' N OBy, and take t so that >’ meets 9B;
transversally. One can check that V” has a tangent
plane along 7, which must coincide with that of >'.

V//

EH E/
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Gluing two minimal surfaces

Let v := %' N OBy, and take t so that >’ meets 9B; "
transversally. One can check that V” has a tangent 4
plane along 7, which must coincide with that of >'.

From this, we deduce that boundary of > meets ¥’
tangentially.
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Gluing two minimal surfaces

Let v := %' N OBy, and take t so that >’ meets 9B;

transversally. One can check that V” has a tangent v’
plane along 7, which must coincide with that of >'.

From this, we deduce that boundary of > meets ¥’

tangentially. s >/
The stability of > implies better regularity: the Y

limit of the Gauss map vy along ~ coincides with
the Gauss map vy.
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Gluing two minimal surfaces

Let v := %' N OBy, and take t so that >’ meets 9B;
transversally. One can check that V” has a tangent
plane along 7, which must coincide with that of >'.

V//

From this, we deduce that boundary of > meets ¥’

tangentially. u

The stability of > implies better regularity: the Y
limit of the Gauss map vy along ~ coincides with
the Gauss map vy.

By PDE theory, since ¥/, > and their Gauss maps
coincide along v, ¥/ = 3", J
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Let X (=Y =Y".
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Let ¥ := Y’ =Y". By our previous discussion, *
can be extended to any An(x,s,2p), and even to
B*(x, 2p).

2p
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Extending X

Let ¥ := Y’ =Y". By our previous discussion, *
can be extended to any An(x,s,2p), and even to
B*(x,2p). In fact,

Y. coincides with V' in B*(x, p). More specifically, 20
Supp([|VI][) N B*(x, p) = N B*(x, p) J
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Extending X

Let ¥ := Y’ =Y". By our previous discussion, *
can be extended to any An(x,s,2p), and even to
B*(x,2p). In fact,

Y. coincides with V' in B*(x, p). More specifically, J 20

Supp(||V]]) N B*(x,p) = N B*(x,p)

Proof: First, notice that V and V" are integer @
rectifiable.
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Extending X

Let ¥ := Y’ =Y". By our previous discussion, *
can be extended to any An(x,s,2p), and even to
B*(x,2p). In fact,

Y. coincides with V' in B*(x, p). More specifically, J 20

Supp(||V]]) N B*(x,p) = N B*(x,p)

Proof: First, notice that V and V" are integer @
rectifiable.

Let y € Supp(]|V|]) N B*(x, p) s.t. V meets
0B(x, s) transversally, where s := d(x,y).
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Extending X

Let ¥ := Y’ =Y". By our previous discussion, *
can be extended to any An(x,s,2p), and even to
B*(x,2p). In fact,

Y. coincides with V' in B*(x, p). More specifically, 20
Supp([|VI][) N B*(x, p) = N B*(x, p) J

Proof: First, notice that V and V" are integer @
rectifiable.

Let y € Supp(]|V|]) N B*(x, p) s.t. V meets

0B(x, s) transversally, where s := d(x,y). In
particular, there exists a plane 7 € T,M tangent to
V.
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V =X on a punctured ball

Since V = V" in B(x,s), w is tangent to V". \ V"
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V =X on a punctured ball

Since V = V" in B(x,s), w is tangent to V". By v
transversality, this means that 7 is tangent to X!
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V =X on a punctured ball

Since V = V" in B(x,s), 7 is tangent to V”. By v
transversality, this means that 7 is tangent to X!
As a result, y € ¥

The set of points y € Supp(||V||) N B*(x, p)
transversal to OB(x, s) is dense. J
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V =X on a punctured ball

Since V = V" in B(x,s), 7 is tangent to V”. By v
transversality, this means that 7 is tangent to X!
As a result, y € ¥

The set of points y € Supp(||V||) N B*(x, p)
transversal to OB(x, s) is dense. J

We deduce that B Y
Supp(||V|)NB*(x, p) € TNB*(x, p) = TNB*(x, p).
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V =X on a punctured ball

Since V = V" in B(x,s), 7 is tangent to V”. By v
transversality, this means that 7 is tangent to X!
As a result, y € ¥

The set of points y € Supp(||V||) N B*(x, p)
transversal to OB(x, s) is dense. J

We deduce that B Y
Supp(||V[[)NB*(x, p) € TNB*(x, p) = TNB*(x, p).

The reverse inclusion also holds, since
IVI(B*(x, p)) = H3(X).
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V =X on a punctured ball

Since V = V" in B(x,s), m is tangent to V". By
transversality, this means that 7 is tangent to X!
As a result, y € ¥

The set of points y € Supp(||V||) N B*(x, p)
transversal to OB(x, s) is dense. J

We deduce that B
Supp(|[VI)NB*(x, p) € ENB*(x, p) = £NB*(x, p).

The reverse inclusion also holds, since
IVI(B*(x, p)) = H3(X).

As a result, Vg«(x ) = X
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V =X on a punctured ball

Since V = V" in B(x,s), m is tangent to V". By
transversality, this means that 7 is tangent to X!
As a result, y € ¥

The set of points y € Supp(||V||) N B*(x, p)
transversal to OB(x, s) is dense. J

We deduce that B
Supp(|[VI)NB*(x, p) € ENB*(x, p) = £NB*(x, p).

The reverse inclusion also holds, since
IVI(B*(x, p)) = H3(X).

As a result, V|g«(, ) = Z. Now, can we extend X
smoothly to x?

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 27 /41



Smooth extension of X at x

We know that the tangent varifold to V at x is a
plane 7 with multiplicity M.
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Smooth extension of X at x

We know that the tangent varifold to V at x is a
plane 7 with multiplicity M.

Stability shows that near x, there are minimal

by
Lipschitz graphs ¥; and constants m;, 1 <i < N !
with >~ m; = M and
2
> = Z m,-Z,-
near x. Moreover, ¥; are ordered by height. >3
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Smooth extension of X at x

We know that the tangent varifold to V at x is a
plane 7 with multiplicity M.

Stability shows that near x, there are minimal

by
Lipschitz graphs ¥; and constants m;, 1 <i < N !
with >~ m; = M and
2
> = Z m,-Z,-
near x. Moreover, ¥; are ordered by height. >3

By Allard’s regularity Theorem, each X; extends
smoothly to x.
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Smooth extension of X at x

We know that the tangent varifold to V at x is a
plane 7 with multiplicity M.

Stability shows that near x, there are minimal
Lipschitz graphs ¥; and constants m;, 1 <i < N
with >~ m; = M and Y=

> = Zm,{,-

near x. Moreover, ¥; are ordered by height.

By Allard’s regularity Theorem, each X; extends
smoothly to x.
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Smooth extension of X at x

We know that the tangent varifold to V at x is a
plane 7 with multiplicity M.

Stability shows that near x, there are minimal
Lipschitz graphs ¥; and constants m;, 1 </ < N
with > m; = M and

> = Zm,'z,'

near x. Moreover, ¥; are ordered by height.

By Allard’s regularity Theorem, each X; extends
smoothly to x. By the maximum principle, N =1,
and X is embedded.
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Talk structure

© Regularity analysis of limit varifolds

@ Theorem 2: Existence of a.m. min-max sequence
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Sketch of the proof

We need to prove that there exists a min-max sequence {¥"} s.t.:
@ It converges to a stationary varifold,
@ For sufficiently small annuli An, ¥"| 4, is a smooth surface,

@ It is almost minimizing in small annuli.
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Sketch of the proof

We need to prove that there exists a min-max sequence {¥"} s.t.:
@ It converges to a stationary varifold,
@ For sufficiently small annuli An, ¥"| 4, is a smooth surface,
@ It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous
minimizing sequence, so (1) holds.
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Sketch of the proof

We need to prove that there exists a min-max sequence {¥"} s.t.:
@ It converges to a stationary varifold,
@ For sufficiently small annuli An, ¥"| 4, is a smooth surface,

@ It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous
minimizing sequence, so (1) holds.

(2) also holds: we know that each {¥"} is smooth except on a finite set P" = {P}1<j<n. Up
to a subsequence, each P/’ converges to a certain P;.
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Sketch of the proof

We need to prove that there exists a min-max sequence {¥"} s.t.:
@ It converges to a stationary varifold,
@ For sufficiently small annuli An, ¥"| 4, is a smooth surface,

@ It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous
minimizing sequence, so (1) holds.

(2) also holds: we know that each {¥"} is smooth except on a finite set P" = {P}1<j<n. Up
to a subsequence, each P/’ converges to a certain P;.

We deduce that there is r = r(x) such that every annulus An with outer radius less than r(x)
does not contain any P; nor P/ for large n.
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (Ui, Uz) such that

d(Ui, Uz) > 2min{diam(U1), diam(Uz)}.
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (Ui, Uz) such that
d(Ui, Uz) > 2min{diam(U1), diam(Uz)}.

We will say that ¥ is e-a.m. in (Uj, Us) if it is e-a.m. in one of the two sets.
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (Ui, Uz) such that
d(Ui, Uz) > 2min{diam(U1), diam(Uz)}.

We will say that ¥ is e-a.m. in (Ui, Us) if it is e-a.m. in one of the two sets. Assume that the
following Proposition holds:

There exists a min-max (sub)sequence {¥'} such that ¥t is 1/L-a.m. in every (U, Us) € C(’)J
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (Ui, Uz) such that
d(Ui, Uz) > 2min{diam(U1), diam(Uz)}.

We will say that ¥ is e-a.m. in (Ui, Us) if it is e-a.m. in one of the two sets. Assume that the
following Proposition holds:

There exists a min-max (sub)sequence {¥'} such that ¥t is 1/L-a.m. in every (U, Us) € C(’)J

Proof of Theorem 2: Consider the pairs (B,(x), M\ B/(x)). Then, either
o there exists r > 0 s.t. a subsequence {£U)} is 1/L-a.m. in B,(x) for all x,

o There is a subsequence {XL0U)}, ri — 0 and x; — x™ such that Y0 is 1/L-a.m. in
M\ Br,(xj).
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (Ui, Uz) such that
d(Ui, Uz) > 2min{diam(U1), diam(Uz)}.

We will say that ¥ is e-a.m. in (Ui, Us) if it is e-a.m. in one of the two sets. Assume that the
following Proposition holds:

There exists a min-max (sub)sequence {¥'} such that ¥t is 1/L-a.m. in every (U, Us) € C(’)J

Proof of Theorem 2: Consider the pairs (B,(x), M\ B/(x)). Then, either
o there exists r > 0 s.t. a subsequence {X:0)} is 1/L-a.m. in B,(x) for all x,

o There is a subsequence {XL0U)}, ri — 0 and x; — x™ such that Y0 is 1/L-a.m. in
M\ Br,(xj).

In any of the cases, we obtain a min max subsequence {X:0)} which is a.m. in small annuli.
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Proof of the Proposition

Let L € N, and

Ky:={t€[0,1] : H*(X]) > mo(A) —1/L}.
H(SF)
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Proof of the Proposition

Let L € N, and

Ky:={t€[0,1] : H*(X]) > mo(A) —1/L}.

H*(SF)

If for some n> L, t € K,,, £ is 1/L-a.m., then
yL.= Y.

K,
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Proof of the Proposition

Let L € N, and

Ky:={t€[0,1] : H*(X]) > mo(A) —1/L}.
H(E)
If for some n> L, t € K,,, £ is 1/L-a.m., then
YL := Y7 Otherwise, we argue by contradiction: for
sufficiently large n, every X7, t € K, is not 1/L-a.m. in
some (U], V) € CO.

K,
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Proof of the Proposition

Let L € N, and

Ky:={t€[0,1] : H*(X]) > mo(A) —1/L}.
H(E)
If for some n> L, t € K,,, £ is 1/L-a.m., then
YL := Y7 Otherwise, we argue by contradiction: for
sufficiently large n, every X7, t € K, is not 1/L-a.m. in
some (U], V) € CO.

We can find at least two isotopies ¢y and 1y which
decrease the area of X7 with small increase in the
process.

K,
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Proof of the Proposition

Let L € N, and
Ko = {t €[0,1] : H*(Z7) > mo(A) — 1/L}.

If for some n> L, t € K,,, £ is 1/L-a.m., then

YL := Y7 Otherwise, we argue by contradiction: for
sufficiently large n, every X7, t € K, is not 1/L-a.m. in
some (U], V) € CO.

We can find at least two isotopies ¢y and 1y which
decrease the area of X7 with small increase in the
process.

By continuity, these isotopies also decrease the area of
Y7 for s in a neighbourhood / of t.
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Proof of the Proposition

Let L € N, and
Ko = {t €[0,1] : H*(Z7) > mo(A) — 1/L}.

If for some n> L, t € K,,, £ is 1/L-a.m., then

YL := Y7 Otherwise, we argue by contradiction: for
sufficiently large n, every X7, t € K, is not 1/L-a.m. in
some (U], V) € CO.

We can find at least two isotopies ¢y and 1y which
decrease the area of X7 with small increase in the
process.

By continuity, these isotopies also decrease the area of
Y7 for s in a neighbourhood / of t.

Idea: apply one of the isotopies 9y, Yy along /.
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Proof of the Proposition

Now, we take a finite cover {/;}1<j<n of K, by some of
these intervals, each associated with an isotopy (7, -)
supported in U;.
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Proof of the Proposition

Now, we take a finite cover {/;}1<j<n of K, by some of
these intervals, each associated with an isotopy (7, -)
supported in U;. We can find a cover s.t.:

o [Nl =@ unless |j — k| = 1.
@ The sets U;, Uj;1 are disjoint if /; N /;11 overlap.
e For all t € Kj,, one of the n;(t) is 1.
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Proof of the Proposition

Now, we take a finite cover {/;}1<j<n of K, by some of
these intervals, each associated with an isotopy 1;(7;, -)
supported in U;. We can find a cover s.t.:

o [Nl =@ unless |j — k| = 1.
@ The sets U;, Uj;1 are disjoint if /; N /;11 overlap.
e For all t € Kj,, one of the 7;(t) is 1.

Ky
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Proof of the Proposition

Now, we take a finite cover {/;}1<j<n of K, by some of
these intervals, each associated with an isotopy 1;(7;, -)
supported in U;. We can find a cover s.t.:

o [Nl =@ unless |j — k| = 1.
@ The sets U;, Uj;1 are disjoint if /; N /;11 overlap.
e For all t € Kj,, one of the 7;(t) is 1.

After applying the isotopies ¥(n;(t),-) to {X7}, we
obtain a new family '} satisfying:

FUM) < FUZ™) —1/2L.

Ky
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Proof of the Proposition

Now, we take a finite cover {/;}1<j<n of K, by some of
these intervals, each associated with an isotopy 1;(7;, -)
supported in U;. We can find a cover s.t.:

o [Nl =@ unless |j — k| = 1.
@ The sets U;, Uj;1 are disjoint if /; N /;11 overlap.
e For all t € Kj,, one of the 7;(t) is 1.

After applying the isotopies ¥(n;(t),-) to {X7}, we
obtain a new family '} satisfying:

FUM) < FUZ™) —1/2L.

Ky

In particular, lim, F({T'7}) < mo(A) —1/2L!
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Talk structure

© Regularity analysis of limit varifolds

@ Theorem 3: a.m. min-max sequence has GRP
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Preliminary definitions and results

Let Z be a set of smooth isotopies on M and ¥ be a surface. We say that {/*(1,X)} C T is
minimizing for (X,Z) if

lim #2((1, E)) = inf H*(4(1, X)),
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Preliminary definitions and results

Let Z be a set of smooth isotopies on M and ¥ be a surface. We say that {/*(1,X)} C T is
minimizing for (X,7) if

lim #2((1, E)) = inf H*(4(1, X)),

Given U C M and an embedded surface ¥, we define:
@ Js(U): the set of all smooth isotopies supported in U.
o Js;(U) := {¢ € Is(U) : H*(¢(t,X)) < H*(X) + 5}
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Preliminary definitions and results

Let Z be a set of smooth isotopies on M and ¥ be a surface. We say that {/*(1,X)} C T is
minimizing for (X,7) if

lim #2((1, E)) = inf H*(4(1, X)),

Given U C M and an embedded surface ¥, we define:
@ Js(U): the set of all smooth isotopies supported in U.
o Js;(U) := {¢ € Is(U) : H*(¢(t,X)) < H*(X) + 5}

Theorem (Meeks-Simon-Yau)

Let {=*} C Js(U) be minimizing and converging to a varifold V. Then, V| is an stable,
embedded, minimal surface.
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V.
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for

(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal
surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. J
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for
(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal
surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. )

Proof of Theorem 3: we will prove that V satisfies the good replacement property.
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for
(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal
surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. )

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V* is a replacement in An.
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for
(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal

surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. )

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V* is a replacement in An.

We can define a diagonal sequence {ijk(j)} which is almost minimizing and converges to the
stationary varifold V*.
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for
(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal
surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. )

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V* is a replacement in An.

We can define a diagonal sequence {fok(j)} which is almost minimizing and converges to the
stationary varifold V*. We apply again the and Proposition to construct a further
replacement V**,
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Proof of Theorem 3

Let {¥/} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V. Assume that the Lemma B and Proposition hold:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for
(3/,73s5;(An)) and converging to a varifold V/. Then, V7|4, is a stable, embedded, minimal
surface.

Any limit V* of a subsequence of {V/} is a replacement for V in An. )

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V* is a replacement in An.

We can define a diagonal sequence {fok(j)} which is almost minimizing and converges to the
stationary varifold V*. We apply again the and Proposition to construct a further
replacement V**. lterating the argument, we find a third replacement V***.
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Proof of the Proposition

We assume Lemma B:
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We assume Lemma B:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for

(3/,7s;(An)) and converging to a varifold V/. Then, V|4, is a stable, embedded, minimal
surface.

Proof of the Proposition: we show that V* = lim; Vi is a replacement for V in An, that is:
o V* =V in M\ An: true, since VV/ = V outside An.
o V*|an is stable, embedded and minimal: true, since the V|4, are (Schoen's estimate).
o [Vl =[IV*]: & is 1/j—am., so [V*|| = lim; | V]| > lim; H2() — 1/j = || V.
o V* is stationary:
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Proof of the Proposition

We assume Lemma B:

Let An € AN (x, r(x)) be a small annulus. For each j, let {¥/**}* be minimizing for

(3/,7s;(An)) and converging to a varifold V/. Then, V|4, is a stable, embedded, minimal
surface.

Proof of the Proposition: we show that V* = lim; Vi is a replacement for V in An, that is:
o V* =V in M\ An: true, since VV/ = V outside An.
o V*|an is stable, embedded and minimal: true, since the V|4, are (Schoen's estimate).
o [[VI[ = [[V¥l: 3 is 1/j—a.m., so | V*|| = lim; | V]| > lim; H* (X)) — 1/j = || V.
e V* is stationary: Otherwise, the VJ's could not be the limit of a minimization problem.
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Proof of Lemma B

Fix j, and let V' := VJ be the limit of ¥* := ¥/ We want to prove that V|, is a stable,
embedded, minimal surface. The proof is based on

Let x € An and k large enough. There exists € > 0 s.t. any isotopy ¢ € Js(B-(x)) can be
achieved via an isotopy ® € Js;(Bo.(x)). J

Proof of Lemma B: we show that V/ is a minimal surface using replacements.
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Let An* € AN (x,¢) and {ZX/} be minimizing for J5(An*). By [MSY], the limit Wk is
minimal in An*, and so is W = lim;, W¥. By , X! belong to Js;(Bs.). We deduce
that W is a replacement for V.

We can now define a diagonal sequence {X%/(K)1k converging to W. Applying , we
obtain a second replacement.
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Proof of Lemma B

Fix j, and let V' := VJ be the limit of ¥* := ¥/ We want to prove that V|, is a stable,
embedded, minimal surface. The proof is based on

Let x € An and k large enough. There exists € > 0 s.t. any isotopy ¢ € Js(B-(x)) can be
achieved via an isotopy ® € Js;(Bo.(x)). J

Proof of Lemma B: we show that V/ is a minimal surface using replacements.

Let An* € AN (x,¢) and {ZX/} be minimizing for J5(An*). By [MSY], the limit Wk is
minimal in An*, and so is W = lim;, W¥. By , X! belong to Js;(Bs.). We deduce
that W is a replacement for V.

We can now define a diagonal sequence {X%/(K)1k converging to W. Applying , we
obtain a second replacement. Iterating this process, we deduce the good replacement property.
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Proof of Lemma A

Let x € An and k large enough. There exists € > 0
s.t. any isotopy ¢ € Js(B-(x)) can be achieved via
an isotopy ¢ € Js;(Bo.(x)).
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Proof of Lemma A

Let x € An and k large enough. There exists € > 0
s.t. any isotopy ¢ € Js(B-(x)) can be achieved via
an isotopy ¢ € Js;(Bo.(x)).

Proof: Let 9(t, x) be an isotopy which squeezes
the ball B:(x) in By:(x) with scale factor (1 — t).
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Proof of Lemma A

Let x € An and k large enough. There exists € > 0
s.t. any isotopy ¢ € Js(B-(x)) can be achieved via
an isotopy ¢ € Js;(Bo.(x)).

Proof: Let 9(t, x) be an isotopy which squeezes
the ball B:(x) in By:(x) with scale factor (1 — t).

For large enough k, we can find a certain (t, x)
satisfying

H2(Y(t, £5)) < HA(ZF) + Ce2.
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Proof of Lemma A

Now, given ¢ € Js(B:(x)), let ® be the isotopy
which applies this process:
e First, it squeezes B. via ¥ (t, x) up to a certain
factor (1 — tp).
@ Then, it applies the isotopy ¢ on the squeezed
ball B(l—to)E(X)'
e Finally, it enlarges B.(x) by applying (¢, x)
reversely.
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Proof of Lemma A

Now, given ¢ € Js(B:(x)), let ® be the isotopy
which applies this process:
e First, it squeezes B. via ¥ (t, x) up to a certain
factor (1 — tp).
@ Then, it applies the isotopy ¢ on the squeezed
ball B(l—to)s(x)'
e Finally, it enlarges B.(x) by applying (¢, x)
reversely.

(1, x) = ®(1, x). Moreover, if ty is sufficiently
close to 1, ®(t, x) € Js;(Ba-(x)). J
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