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Generalized families of surfaces and saturated sets

A family {Σt}t∈[0,1], Σt ⊂ M, is a generalized family of surfaces (GFS) if:

Σt is a surface except for a finite set t ∈ T ⊂ [0, 1].

There exists a finite set P ⊂ M such that Σt \ P is a surface for all t ∈ T .

t 7→ H2(Σt) is continuous.

t 7→ Σt is continuous in the Hausdorff topology.

Let ψ(t, x) : [0, 1]×M → M be an isotopy. If {Σt} is a GFS, then {ψ(t,Σt)} is also a GFS.

A collection of GFS’s Λ is a saturated set if it is closed under the previous operation.
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Inf max and minimizing sequences

Given {Σt} ∈ Λ, we define:

F({Σt}) := max
t∈[0,1]

H2(Σt)

m0(Λ) := inf
Λ
F = inf

Σt∈Λ
max
t∈[0,1]

H2(Σt)

A sequence {Σt}n is minimizing if F({Σt}n) → m0(Λ).

A sequence of slices {Σn
tn} is a min-max sequence if H2(Σn

tn) → m0(Λ).

To obtain minimal surfaces, we need to find a Λ such that m0(Λ) > 0.
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Constructing an appropriate saturated set

Let f : M → [0, 1] be a Morse function on M. Then, the slices Σt := f −1(t) form a GFS.

Moreover, if Λ is the smallest saturated set containing {Σt}, m0(Λ) > 0.

Proof: Given any {Γt} ∈ Λ, there exists ψ such that Γt = ψ(t,Σt).

Let Ut = f −1([0, t)), Vt = ψ(t,Ut). The volume Vol(Vt) is continuous, and moreover
Vol(V0) = 0, Vol(V1) = Vol(M).

In particular, there exists Vs whose volume is Vol(M)/2. By the isoperimetric inequality and
by definition of F({Γt}),

0 < c(M) ≤ H2(Γs) ≤ F({Γt}),

and so m0(Λ) ≥ c(M) > 0.
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Main Theorem

Theorem [Simon-Smith]

Let M be a closed Riemannian 3-manifold. Given any saturated set Λ such that m0(Λ) > 0,
there exists a min-max sequence converging to a embedded minimal surface with area
m0(Λ).

Idea of the Theorem

We will define a space with good compactness properties: the space of varifolds.

In this space, min-max sequences will have a limit (up to subsequences).

We will find an appropriate min-max sequence converging to a minimal surface.
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Regular surfaces as linear operators

Given a vector space, we define the 2-Grassmannian G (V ) as the set of all its linear
subspaces of dimension 2.

Given an open set U of a manifold M, we define the 2-Grassmannian G (U) of U as the
manifold given by

G (U) :=
⋃
x∈U

G (TxM).

Any surface Σ ⊂ U with finite area induces a (non negative) bounded linear operator on
Cc(G (U)):

φ(x , π) ∈ Cc(G (U)) 7−→
∫
Σ
φ(x ,TxΣ)dH2
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Varifolds: a weak notion of surfaces

We define a varifold V in U as any non-negative bounded linear operator on Cc(G (U)).

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given
φ ∈ Cc(G (U)),

V (φ) =

∫
G(U)

φdV

Moreover, there exists a unique measure ∥V ∥, called the mass measure, defined on U, and
such that given φ ∈ Cc(U),∫

U
φ(x)d∥V ∥(x) =

∫
G(U)

φ(x)dV (x , π).

If Σ is a surface and VΣ is its associated varifold, then ∥VΣ∥(U) is the area of Σ in U.
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The space of varifolds and its compactness properties

We denote by V(U) the set of varifolds in U.

We endow V(U) with the weak-∗ topology.

Let C > 0 be a constant. Then, the set of varifolds given by

{V ∈ V(U) : ∥V ∥(U) ≤ C}

is metrizable and compact. In particular, any sequence of varifolds with uniformly bounded
mass has a convergent subsequence.
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First variation and stationary varifolds

Let f : U → U ′ be a diffeomorphism and V ∈ V(U). Then, f induces a varifold f#V ∈ V(U ′).

Given a vector field χ, let ψχ(t, x) be the isotopy generated by χ, i.e., ∂ψ∂t = χ(ψ).

We define the first variation of a varifold V w.r.t. χ as

[δV ](χ) =
d

dt
(∥ψχ(t, ·)#V ∥)

∣∣∣
t=0

.

We say that V is stationary if [δV ](χ) = 0 for every field χ.
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Finding stationary varifolds

Let {Σt}n be a minimizing sequence, and consider a certain min-max sequence {Σn
tn}. Does

this converge to anything?

By compactness, a subsequence must converge to a certain varifold V with mass m0(Λ).
However, V need not be stationary!

Theorem (Pull-tight process)

There exists a minimizing sequence {Γt}n such that any min-max sequence {Γntn} converges
to a stationary varifold.

Idea of the Theorem: For each varifold we will define an isotopy ψV (t, x) such that:

If V is stationary, then ψV (t, ·) is the identity map.

Otherwise, V ′ := (ψV (1, ·))#V has strictly less mass than V .

The difference between ∥V ′∥(M) and ∥V ∥(M) depends uniformly on the distance
between V and the set of stationary varifolds.
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Pull-tight process

Let X be the set of varifolds with mass less or equal
than 4m0, which is compact and metrizable.

Let V∞ ⊂ X be the (compact) set of stationary
varifolds in X , and

Vk := {V : 2−k+1 ≥ d(V ,V∞) ≥ 2−k}

The sets Vk are also compact.

There exists c = c(k) > 0 such that, for each
V ∈ Vk there exists χV with ∥χV ∥ ≤ 1 and

[δV ](χV ) ≤ −c(k).
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Pull-tight process

By compactness, we can take a finite set of
varifolds V k

i ⊂ Vk , fields χ
k
i and balls B(V k

i , r
k
i )

s.t.:

If V ∈ B(V k
i , r

k
i ), then [δV ](χi ) ≤ −c(k)/2.

B(V k
i , r

k
i /2) cover Vk .

Let φk
i ∈ Cc(Brki

(V k
i )) be a partition of the unit,

and define H : X → C∞(M,TM) as

H(V ) :=
∑
i ,k

φk
i (V )χk

i .

Notice that H is continuous.
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Pull-tight process

There exist constants C = C (k) and a time
T = T (k) such that

∥V (T )∥(M) ≤ ∥V (0)∥(M)− C (k)

for every V ∈ Vk , where V (T ) is the evolution of
V = V (0) under the field H(V ).

Now, let {Σt}n be a minimizing sequence. Then,
we can define a tighter minimizing sequence:

Let Γnt := Σn
t (T ). Then, the sequence {Γt}n is

minimizing and each min-max sequence converges
to a stationary varifold.
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Almost minimizing surfaces

Let ε > 0, U ⊂ M and Σ ⊂ U. We will say that the surface Σ is ε-almost minimizing if there
does not exist any isotopy ψ supported in U such that:

H2(ψ(t,Σ)) ≤ H2(Σ) + ε
8 for all t ∈ [0, 1].

H2(ψ(1,Σ)) ≤ H2(Σ)− ε.

A sequence {Σn} is almost minimizing if each Σn is εn-almost minimizing, and εn → 0.

Let AN (x , r) be the set of annuli centered in x ∈ M with outer radius less than r .

A sequence {Σn} is almost minimizing in small annuli if there exists r : M → (0,∞) such that
{Σn} is almost minimizing in every An ∈ AN (x , r(x)).
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Replacements

Let V be a stationary varifold and U ⊂ M. We say that V ′ is a replacement of V in U if:

V ′ is stationary and ∥V ∥ = ∥V ′∥.
V = V ′ on M \ U.

Σ := V ′|U is a embedded stable minimal surface with Σ \ Σ ∈ ∂U.

We say that V has the good replacement property if:

V has a replacement V ′ in any An ∈ AN (x , r(x)).

V ′ has a second replacement V ′′ in any An ∈ AN (y , r(y)).

V ′′ has a third replacement V ′′′ in any An ∈ AN (z , r(z)).
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Regularity results

Theorem 1 (GRP implies minimality)

If V has the good replacement property, then it is an embedded minimal surface.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence {Σn} which is almost minimizing in small annuli and
converges to a stationary varifold V . Moreover, given any small annulus An, Σn|An is a
smooth surface for sufficiently large n.

Theorem 3 (a.m. min-max sequence has GRP)

The varifold V of the previous Proposition has the good replacement property. In particular,
V is an embedded, minimal surface with area m0(Λ).
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Replacements of V

If V is stationary and admits replacements in small
annuli, then it is integer rectifiable.

We fix some x ∈ M, ρ > 0 and consider the annulus
An1 := An(x , ρ, 2ρ).

We take a good replacement V ′ of V in An1, and
define Σ′ := V ′|An1 .

Given s < ρ < t < 2ρ, we consider a further
replacement V ′′ of V ′ in An2(s) := An(x , s, t), and
Σ′′ := V |An2 .

We have two surfaces Σ′ and Σ′′. Do they
coincide?
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Gluing two minimal surfaces

Let γ := Σ′ ∩ ∂Bt , and take t so that Σ′ meets ∂Bt

transversally. One can check that V ′′ has a tangent
plane along γ, which must coincide with that of Σ′.

From this, we deduce that boundary of Σ′′ meets Σ′

tangentially.

The stability of Σ′′ implies better regularity: the
limit of the Gauss map νΣ′′ along γ coincides with
the Gauss map νΣ′ .

By PDE theory, since Σ′, Σ′′ and their Gauss maps
coincide along γ, Σ′ ≡ Σ′′.
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Extending Σ

Let Σ := Σ′ ≡ Σ′′.

By our previous discussion, Σ
can be extended to any An(x , s, 2ρ), and even to
B∗(x , 2ρ). In fact,

Σ coincides with V in B∗(x , ρ). More specifically,

Supp(∥V ∥) ∩ B∗(x , ρ) = Σ ∩ B∗(x , ρ)

Proof: First, notice that V and V ′′ are integer
rectifiable.

Let y ∈ Supp(∥V ∥) ∩ B∗(x , ρ) s.t. V meets
∂B(x , s) transversally, where s := d(x , y). In
particular, there exists a plane π ∈ TyM tangent to
V .
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V = Σ on a punctured ball

Since V = V ′′ in B(x , s), π is tangent to V ′′.

By
transversality, this means that π is tangent to Σ!
As a result, y ∈ Σ.

The set of points y ∈ Supp(∥V ∥) ∩ B∗(x , ρ)
transversal to ∂B(x , s) is dense.

We deduce that
Supp(∥V ∥)∩B∗(x , ρ) ⊆ Σ∩B∗(x , ρ) = Σ∩B∗(x , ρ).

The reverse inclusion also holds, since
∥V ∥(B∗(x , ρ)) = H2(Σ).

As a result, V |B∗(x ,ρ) = Σ. Now, can we extend Σ
smoothly to x?
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Smooth extension of Σ at x

We know that the tangent varifold to V at x is a
plane π with multiplicity M.

Stability shows that near x , there are minimal
Lipschitz graphs Σi and constants mi , 1 ≤ i ≤ N
with

∑
mi = M and

Σ =
∑

miΣi

near x . Moreover, Σi are ordered by height.

By Allard’s regularity Theorem, each Σi extends
smoothly to x . By the maximum principle, N = 1,
and Σ is embedded.
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Talk structure

1 Introduction and motivation

2 Statement of the main Theorem

3 An (unfortunately irreductible) introduction to varifolds

4 Finding stationary varifolds

5 Regularity analysis of limit varifolds
Theorem 1: GRP implies minimality
Theorem 2: Existence of a.m. min-max sequence
Theorem 3: a.m. min-max sequence has GRP
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Sketch of the proof

We need to prove that there exists a min-max sequence {Σn} s.t.:

1 It converges to a stationary varifold,

2 For sufficiently small annuli An, Σn|An is a smooth surface,

3 It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous
minimizing sequence, so (1) holds.

(2) also holds: we know that each {Σn} is smooth except on a finite set Pn = {Pn
i }1≤i≤N . Up

to a subsequence, each Pn
i converges to a certain Pi .

We deduce that there is r = r(x) such that every annulus An with outer radius less than r(x)
does not contain any Pi nor P

n
i for large n.
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Finding an almost minimizing min-max sequence

Let CO be the set of pairs (U1,U2) such that

d(U1,U2) ≥ 2min{diam(U1), diam(U2)}.

We will say that Σ is ε-a.m. in (U1,U2) if it is ε-a.m. in one of the two sets. Assume that the
following Proposition holds:

There exists a min-max (sub)sequence {ΣL} such that ΣL is 1/L-a.m. in every (U1,U2) ∈ CO

Proof of Theorem 2: Consider the pairs (Br (x),M \ Br (x)). Then, either

there exists r > 0 s.t. a subsequence {ΣL(j)} is 1/L-a.m. in Br (x) for all x ,

There is a subsequence {ΣL(j)}, rj → 0 and xj → x∗ such that ΣL(j) is 1/L-a.m. in
M \ Brj (xj).

In any of the cases, we obtain a min max subsequence {ΣL(j)} which is a.m. in small annuli.
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Proof of the Proposition

Let L ∈ N, and

Kn := {t ∈ [0, 1] : H2(Σn
t ) ≥ m0(Λ)− 1/L}.

If for some n > L, t ∈ Kn, Σ
n
t is 1/L-a.m., then

ΣL := Σn
t . Otherwise, we argue by contradiction: for

sufficiently large n, every Σn
t , t ∈ Kn is not 1/L-a.m. in

some (Un
t ,V

n
t ) ∈ CO.

We can find at least two isotopies ψU and ψV which
decrease the area of Σn

t with small increase in the
process.

By continuity, these isotopies also decrease the area of
Σn
s for s in a neighbourhood I of t.

Idea: apply one of the isotopies ψU , ψV along I .
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Proof of the Proposition

Now, we take a finite cover {Ij}1≤j≤N of Kn by some of
these intervals, each associated with an isotopy ψj(ηj , ·)
supported in Uj .

We can find a cover s.t.:

Ij ∩ Ik = ∅ unless |j − k | = 1.

The sets Uj , Uj+1 are disjoint if Ij ∩ Ij+1 overlap.

For all t ∈ Kn, one of the ηj(t) is 1.

After applying the isotopies ψ(ηj(t), ·) to {Σn
t }, we

obtain a new family Γnt satisfying:

F({Γnt }) ≤ F({Σn
t })− 1/2L.

In particular, limn F({Γnt }) ≤ m0(Λ)− 1/2L!!
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Preliminary definitions and results

Let I be a set of smooth isotopies on M and Σ be a surface. We say that {ψk(1,Σ)} ⊂ I is
minimizing for (Σ, I) if

lim
k

H2(ψk(1,Σ)) = inf
ψ∈I

H2(ψ(1,Σ)).

Given U ⊂ M and an embedded surface Σ, we define:

Is(U): the set of all smooth isotopies supported in U.

Isj(U) := {ψ ∈ Is(U) : H2(ψ(t,Σ)) ≤ H2(Σ) + 1
8j }.

Theorem (Meeks-Simon-Yau)

Let {Σk} ⊂ Is(U) be minimizing and converging to a varifold V . Then, V |U is an stable,
embedded, minimal surface.
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Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V .

Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property.

By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗.

We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗.

Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of Theorem 3

Let {Σj} be the a.m. min-max sequence obtained in Theorem 2, which converges to a
stationary varifold V . Assume that the Lemma B and Proposition hold:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Any limit V ∗ of a subsequence of {V j} is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the
previous Proposition, V ∗ is a replacement in An.

We can define a diagonal sequence {Σj ,k(j)} which is almost minimizing and converges to the
stationary varifold V ∗. We apply again the Lemma B and Proposition to construct a further
replacement V ∗∗. Iterating the argument, we find a third replacement V ∗∗∗.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 36 / 41



Proof of the Proposition

We assume Lemma B:

Let An ∈ AN (x , r(x)) be a small annulus. For each j , let {Σj ,k}k be minimizing for
(Σj , Isj(An)) and converging to a varifold V j . Then, V j |An is a stable, embedded, minimal
surface.

Proof of the Proposition: we show that V ∗ = limj V
j is a replacement for V in An, that is:

V ∗ = V in M \ An: true, since V j ≡ V outside An.

V ∗|An is stable, embedded and minimal: true, since the V j |An are (Schoen’s estimate).

∥V ∥ = ∥V ∗∥: Σj is 1/j−a.m., so ∥V ∗∥ = limj ∥V j∥ ≥ limj H2(Σj)− 1/j = ∥V ∥.
V ∗ is stationary: Otherwise, the V j ’s could not be the limit of a minimization problem.
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Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗).

By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗,

and so is W = limk W
k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce

that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k .

By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε).

We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement.

Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma B

Fix j , and let V ′ := V j be the limit of Σk := Σj ,k . We want to prove that V ′|An is a stable,
embedded, minimal surface. The proof is based on Lemma A:

Let x ∈ An and k large enough. There exists ε > 0 s.t. any isotopy φ ∈ Is(Bε(x)) can be
achieved via an isotopy Φ ∈ Isj(B2ε(x)).

Proof of Lemma B: we show that V ′ is a minimal surface using replacements.

Let An∗ ∈ AN (x , ε) and {Σk,l}l be minimizing for Is(An∗). By [MSY], the limit W k is
minimal in An∗, and so is W = limk W

k . By Lemma A, Σk,l belong to Isj(B2ε). We deduce
that W is a replacement for V ′.

We can now define a diagonal sequence {Σk,l(k)}k converging to W . Applying Lemma A, we
obtain a second replacement. Iterating this process, we deduce the good replacement property.

Alberto Cerezo Cid (IMUS - UGR) May - June, 2024 38 / 41



Proof of Lemma A

Let x ∈ An and k large enough. There exists ε > 0
s.t. any isotopy φ ∈ Is(Bε(x)) can be achieved via
an isotopy Φ ∈ Isj(B2ε(x)).

Proof: Let ψ(t, x) be an isotopy which squeezes
the ball Bε(x) in B2ε(x) with scale factor (1− t).

For large enough k, we can find a certain ψ(t, x)
satisfying

H2(ψ(t,Σk)) ≤ H2(Σk) + Cε2.
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Proof of Lemma A

Now, given φ ∈ Is(Bε(x)), let Φ be the isotopy
which applies this process:

First, it squeezes Bε via ψ(t, x) up to a certain
factor (1− t0).

Then, it applies the isotopy φ on the squeezed
ball B(1−t0)ε(x).

Finally, it enlarges Bε(x) by applying ψ(t, x)
reversely.

φ(1, x) ≡ Φ(1, x). Moreover, if t0 is sufficiently
close to 1, Φ(t, x) ∈ Isj(B2ε(x)).
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