Introduction to Simon-Smith min-max theory

Alberto Cerezo Cid (IMUS - Universidad de Granada)

May - June, 2024

Grant PID2020-118137GB-I00 funded by:

(B)

Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

A family $\{\Sigma_t\}_{t\in[0,1]}$, $\Sigma_t \subset M$, is a generalized family of surfaces (GFS) if:

- Σ_t is a surface except for a finite set $t \in \mathcal{T} \subset [0, 1]$.
- There exists a finite set $\mathcal{P} \subset M$ such that $\Sigma_t \setminus \mathcal{P}$ is a surface for all $t \in \mathcal{T}$.
- $t \mapsto \mathcal{H}^2(\Sigma_t)$ is continuous.
- $t\mapsto \Sigma_t$ is continuous in the Hausdorff topology.

4/41

A family $\{\Sigma_t\}_{t\in[0,1]}$, $\Sigma_t \subset M$, is a generalized family of surfaces (GFS) if:

- Σ_t is a surface except for a finite set $t \in \mathcal{T} \subset [0, 1]$.
- There exists a finite set $\mathcal{P} \subset M$ such that $\Sigma_t \setminus \mathcal{P}$ is a surface for all $t \in \mathcal{T}$.
- $t \mapsto \mathcal{H}^2(\Sigma_t)$ is continuous.
- $t\mapsto \Sigma_t$ is continuous in the Hausdorff topology.

Let $\psi(t,x): [0,1] \times M \to M$ be an isotopy. If $\{\Sigma_t\}$ is a GFS, then $\{\psi(t,\Sigma_t)\}$ is also a GFS.

A family $\{\Sigma_t\}_{t\in[0,1]}$, $\Sigma_t \subset M$, is a generalized family of surfaces (GFS) if:

- Σ_t is a surface except for a finite set $t \in \mathcal{T} \subset [0, 1]$.
- There exists a finite set $\mathcal{P} \subset M$ such that $\Sigma_t \setminus \mathcal{P}$ is a surface for all $t \in \mathcal{T}$.
- $t \mapsto \mathcal{H}^2(\Sigma_t)$ is continuous.
- $t\mapsto \Sigma_t$ is continuous in the Hausdorff topology.

Let $\psi(t,x): [0,1] \times M \to M$ be an isotopy. If $\{\Sigma_t\}$ is a GFS, then $\{\psi(t,\Sigma_t)\}$ is also a GFS.

A collection of GFS's Λ is a **saturated set** if it is closed under the previous operation.

Inf max and minimizing sequences

Given $\{\Sigma_t\} \in \Lambda$, we define:

$$egin{aligned} \mathcal{F}(\{\Sigma_t\}) &:= \max_{t\in[0,1]} \mathcal{H}^2(\Sigma_t) \ m_0(\Lambda) &:= \inf_\Lambda \mathcal{F} = \inf_{\Sigma_t\in\Lambda} \max_{t\in[0,1]} \mathcal{H}^2(\Sigma_t) \end{aligned}$$

э

Inf max and minimizing sequences

Given $\{\Sigma_t\} \in \Lambda$, we define:

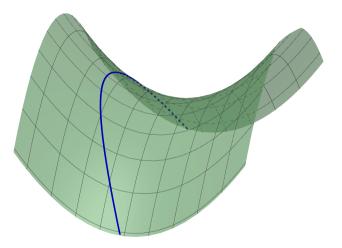
$$\mathcal{F}(\{\Sigma_t\}) := \max_{t \in [0,1]} \mathcal{H}^2(\Sigma_t)$$
 $m_0(\Lambda) := \inf_{\Lambda} \mathcal{F} = \inf_{\Sigma_t \in \Lambda} \max_{t \in [0,1]} \mathcal{H}^2(\Sigma_t)$

A sequence
$$\{\Sigma_t\}^n$$
 is **minimizing** if $\mathcal{F}(\{\Sigma_t\}^n) \to m_0(\Lambda)$.
A sequence of slices $\{\Sigma_{t_n}^n\}$ is a **min-max sequence** if $\mathcal{H}^2(\Sigma_{t_n}^n) \to m_0(\Lambda)$.

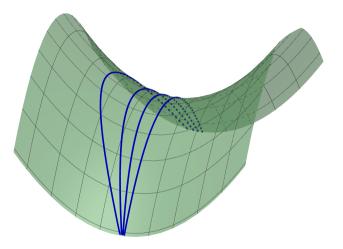
To obtain minimal surfaces, we need to find a Λ such that $m_0(\Lambda) > 0$.

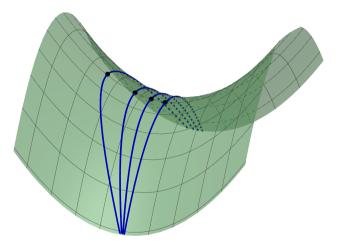
May - June, 2024

イロト イポト イヨト イヨト 一日









Alberto Cerezo Cid (IMUS - UGR)

Let $f: M \to [0,1]$ be a Morse function on M. Then, the slices $\Sigma_t := f^{-1}(t)$ form a GFS.

Proof: Given any $\{\Gamma_t\} \in \Lambda$, there exists ψ such that $\Gamma_t = \psi(t, \Sigma_t)$.

Proof: Given any $\{\Gamma_t\} \in \Lambda$, there exists ψ such that $\Gamma_t = \psi(t, \Sigma_t)$.

Let $U_t = f^{-1}([0, t])$, $V_t = \psi(t, U_t)$. The volume $Vol(V_t)$ is continuous, and moreover $Vol(V_0) = 0$, $Vol(V_1) = Vol(M)$.

Proof: Given any $\{\Gamma_t\} \in \Lambda$, there exists ψ such that $\Gamma_t = \psi(t, \Sigma_t)$.

Let $U_t = f^{-1}([0, t])$, $V_t = \psi(t, U_t)$. The volume $Vol(V_t)$ is continuous, and moreover $Vol(V_0) = 0$, $Vol(V_1) = Vol(M)$.

In particular, there exists V_s whose volume is Vol(M)/2. By the isoperimetric inequality and by definition of $\mathcal{F}({\Gamma_t})$,

$$0 < c(M) \leq \mathcal{H}^2(\Gamma_s) \leq \mathcal{F}({\{\Gamma_t\}}),$$

and so $m_0(\Lambda) \ge c(M) > 0$.

Let M be a closed Riemannian 3-manifold. Given any saturated set Λ such that $m_0(\Lambda) > 0$, there exists a min-max sequence converging to a **embedded minimal surface** with area $m_0(\Lambda)$.

Let M be a closed Riemannian 3-manifold. Given any saturated set Λ such that $m_0(\Lambda) > 0$, there exists a min-max sequence converging to a **embedded minimal surface** with area $m_0(\Lambda)$.

Idea of the Theorem

We will define a space with good compactness properties: the space of varifolds.

Let M be a closed Riemannian 3-manifold. Given any saturated set Λ such that $m_0(\Lambda) > 0$, there exists a min-max sequence converging to a **embedded minimal surface** with area $m_0(\Lambda)$.

Idea of the Theorem

We will define a space with good compactness properties: the space of varifolds.

In this space, min-max sequences will have a limit (up to subsequences).

Let *M* be a closed Riemannian 3-manifold. Given any saturated set Λ such that $m_0(\Lambda) > 0$, there exists a min-max sequence converging to a **embedded minimal surface** with area $m_0(\Lambda)$.

Idea of the Theorem

We will define a space with good compactness properties: the space of varifolds.

In this space, min-max sequences will have a limit (up to subsequences).

We will find an appropriate min-max sequence converging to a minimal surface.

Introduction and motivation

2 Statement of the main Theorem

An (unfortunately irreductible) introduction to varifolds

- 4 Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

Given a vector space, we define the 2-**Grassmannian** G(V) as the set of all its linear subspaces of dimension 2.

Given a vector space, we define the 2-**Grassmannian** G(V) as the set of all its linear subspaces of dimension 2.

Given an open set U of a manifold M, we define the **2-Grassmannian** G(U) of U as the manifold given by

$$G(U) := \bigcup_{x \in U} G(T_x M).$$

Given a vector space, we define the 2-**Grassmannian** G(V) as the set of all its linear subspaces of dimension 2.

Given an open set U of a manifold M, we define the **2-Grassmannian** G(U) of U as the manifold given by

$$G(U) := \bigcup_{x \in U} G(T_x M).$$

Any surface $\Sigma \subset U$ with finite area induces a (non negative) bounded linear operator on $C_c(G(U))$:

$$\varphi(x,\pi)\in C_{c}(G(U))\longmapsto \int_{\Sigma}\varphi(x,T_{x}\Sigma)d\mathcal{H}^{2}$$

May - June, 2024	10 / 41

Varifolds: a weak notion of surfaces

We define a varifold V in U as any non-negative bounded linear operator on $C_c(G(U))$.

< ∃ >

We define a varifold V in U as any non-negative bounded linear operator on $C_c(G(U))$.

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given $\varphi \in C_c(G(U))$,

$$V(\varphi) = \int_{G(U)} \varphi dV$$

11/41

We define a varifold V in U as any non-negative bounded linear operator on $C_c(G(U))$.

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given $\varphi \in C_c(G(U))$,

$$V(\varphi) = \int_{G(U)} \varphi dV$$

Moreover, there exists a unique measure ||V||, called the **mass measure**, defined on U, and such that given $\varphi \in C_c(U)$,

$$\int_U \varphi(x) d \|V\|(x) = \int_{G(U)} \varphi(x) dV(x, \pi).$$

We define a varifold V in U as any non-negative bounded linear operator on $C_c(G(U))$.

By Riesz Theorem, we can identify each varifold with a Radon measure such that, given $\varphi \in C_c(G(U))$,

$$V(\varphi) = \int_{G(U)} \varphi dV$$

Moreover, there exists a unique measure ||V||, called the **mass measure**, defined on U, and such that given $\varphi \in C_c(U)$,

$$\int_U \varphi(x) d \|V\|(x) = \int_{G(U)} \varphi(x) dV(x,\pi).$$

If Σ is a surface and V_{Σ} is its associated varifold, then $\|V_{\Sigma}\|(U)$ is the area of Σ in U.

We endow $\mathcal{V}(U)$ with the weak-* topology.

12/41

We endow $\mathcal{V}(U)$ with the weak-* topology.

Let C > 0 be a constant. Then, the set of varifolds given by

 $\{V \in \mathcal{V}(U) : \|V\|(U) \leq C\}$

May - June, 2024

12/41

is metrizable and compact.

We endow $\mathcal{V}(U)$ with the weak-* topology.

Let C > 0 be a constant. Then, the set of varifolds given by

 $\{V \in \mathcal{V}(U) : \|V\|(U) \le C\}$

is **metrizable** and **compact**. In particular, any sequence of varifolds with uniformly bounded mass has a **convergent subsequence**.

Let $f: U \to U'$ be a diffeomorphism and $V \in \mathcal{V}(U)$. Then, f induces a varifold $f_{\#}V \in \mathcal{V}(U')$.

Let $f: U \to U'$ be a diffeomorphism and $V \in \mathcal{V}(U)$. Then, f induces a varifold $f_{\#}V \in \mathcal{V}(U')$.

Given a vector field χ , let $\psi_{\chi}(t,x)$ be the isotopy generated by χ , i.e., $\frac{\partial \psi}{\partial t} = \chi(\psi)$.

Let $f: U \to U'$ be a diffeomorphism and $V \in \mathcal{V}(U)$. Then, f induces a varifold $f_{\#}V \in \mathcal{V}(U')$.

Given a vector field χ , let $\psi_{\chi}(t, x)$ be the isotopy generated by χ , i.e., $\frac{\partial \psi}{\partial t} = \chi(\psi)$.

We define the **first variation** of a varifold V w.r.t. χ as

$$[\delta V](\chi) = rac{d}{dt} (\|\psi_{\chi}(t,\cdot)_{\#}V\|)\Big|_{t=0}.$$

	(IMUS - I	

Let $f: U \to U'$ be a diffeomorphism and $V \in \mathcal{V}(U)$. Then, f induces a varifold $f_{\#}V \in \mathcal{V}(U')$.

Given a vector field χ , let $\psi_{\chi}(t, x)$ be the isotopy generated by χ , i.e., $\frac{\partial \psi}{\partial t} = \chi(\psi)$.

We define the **first variation** of a varifold V w.r.t. χ as

$$[\delta V](\chi) = \frac{d}{dt} (\|\psi_{\chi}(t,\cdot)_{\#}V\|)\Big|_{t=0}.$$

May - June, 2024

We say that V is **stationary** if $[\delta V](\chi) = 0$ for every field χ .

Alberto	Cerezo	Cid ((IMUS -	UGR)

Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds

Finding stationary varifolds

- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

Finding stationary varifolds

Let $\{\Sigma_t\}^n$ be a minimizing sequence, and consider a certain min-max sequence $\{\Sigma_{t_n}^n\}$. Does this converge to anything?

▶ < ∃ ▶</p>

Finding stationary varifolds

Let $\{\Sigma_t\}^n$ be a minimizing sequence, and consider a certain min-max sequence $\{\Sigma_{t_n}^n\}$. Does this converge to anything?

By compactness, a subsequence must converge to a certain varifold V with mass $m_0(\Lambda)$.

Finding stationary varifolds

Let $\{\Sigma_t\}^n$ be a minimizing sequence, and consider a certain min-max sequence $\{\Sigma_{t_n}^n\}$. Does this converge to anything?

By compactness, a subsequence must converge to a certain varifold V with mass $m_0(\Lambda)$. However, V need not be stationary! Let $\{\Sigma_t\}^n$ be a minimizing sequence, and consider a certain min-max sequence $\{\Sigma_{t_n}^n\}$. Does this converge to anything?

By compactness, a subsequence must converge to a certain varifold V with mass $m_0(\Lambda)$. However, V need not be stationary!

Theorem (Pull-tight process)

There exists a **minimizing sequence** $\{\Gamma_t\}^n$ such that **any** min-max sequence $\{\Gamma_{t_n}^n\}$ converges to a stationary varifold.

Idea of the Theorem: For each varifold we will define an isotopy $\psi_V(t,x)$ such that:

- If V is stationary, then $\psi_V(t, \cdot)$ is the identity map.
- Otherwise, $V' := (\psi_V(1, \cdot))_{\#} V$ has strictly less mass than V.
- The difference between ||V'||(M) and ||V||(M) depends uniformly on the distance between V and the set of stationary varifolds.

Let X be the set of varifolds with mass less or equal than $4m_0$, which is **compact** and **metrizable**.

Let X be the set of varifolds with mass less or equal than $4m_0$, which is **compact** and **metrizable**.

Let $\mathcal{V}_{\infty} \subset X$ be the (compact) set of **stationary** varifolds in *X*, and

$$\mathcal{V}_k := \{V \ : \ 2^{-k+1} \geq \mathfrak{d}(V, \mathcal{V}_\infty) \geq 2^{-k}\}$$

The sets \mathcal{V}_k are also **compact**.

${\cal V}_1$	
${\cal V}_2$	
${\cal V}_3$	
	:
${\mathcal V}_\infty$	
	 < □ > < □ > < □ > < Ξ > < Ξ > < Ξ >
	May - June. 2024

Let X be the set of varifolds with mass less or equal than $4m_0$, which is **compact** and **metrizable**.

Let $\mathcal{V}_{\infty} \subset X$ be the (compact) set of **stationary** varifolds in *X*, and

$$\mathcal{V}_k := \{V : 2^{-k+1} \ge \mathfrak{d}(V, \mathcal{V}_\infty) \ge 2^{-k}\}$$

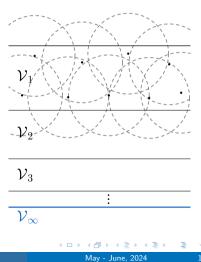
The sets \mathcal{V}_k are also **compact**.

There exists c = c(k) > 0 such that, for each $V \in \mathcal{V}_k$ there exists χ_V with $\|\chi_V\| \le 1$ and $[\delta V](\chi_V) \le -c(k)$.

 ${\mathcal V}_1$ \mathcal{V}_2 \mathcal{V}_3 • $\overline{\mathcal{V}_{\infty}}$

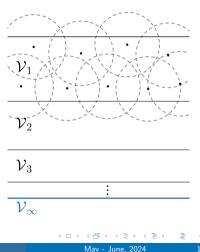
By **compactness**, we can take a finite set of varifolds $V_i^k \subset \mathcal{V}_k$, fields χ_i^k and balls $B(V_i^k, r_i^k)$ s.t.:

• If $V \in B(V_i^k, r_i^k)$, then $[\delta V](\chi_i) \leq -c(k)/2$.



By **compactness**, we can take a finite set of varifolds $V_i^k \subset \mathcal{V}_k$, fields χ_i^k and balls $B(V_i^k, r_i^k)$ s.t.:

- If $V \in B(V_i^k, r_i^k)$, then $[\delta V](\chi_i) \leq -c(k)/2$.
- $B(V_i^k, r_i^k/2)$ cover \mathcal{V}_k .



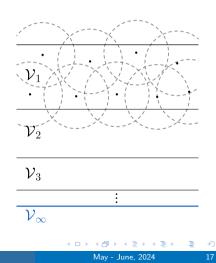
By **compactness**, we can take a finite set of varifolds $V_i^k \subset \mathcal{V}_k$, fields χ_i^k and balls $B(V_i^k, r_i^k)$ s.t.:

If V ∈ B(V_i^k, r_i^k), then [δV](χ_i) ≤ −c(k)/2.
B(V_i^k, r_i^k/2) cover V_k.

Let $\varphi_i^k \in C_c(B_{r_i^k}(V_i^k))$ be a partition of the unit, and define $H: X \to C^{\infty}(M, TM)$ as

$$H(V) := \sum_{i,k} \varphi_i^k(V) \chi_i^k.$$

Notice that *H* is **continuous**.

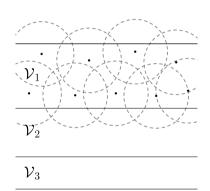


Pull-tight process

There exist constants C = C(k) and a time T = T(k) such that

 $\|V(T)\|(M) \le \|V(0)\|(M) - C(k)$

for every $V \in \mathcal{V}_k$, where V(T) is the *evolution* of V = V(0) under the field H(V).



 $\overline{\mathcal{V}}_\infty$

Pull-tight process

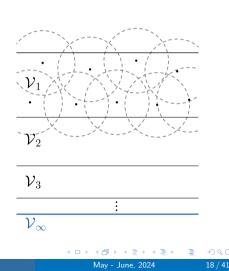
There exist constants C = C(k) and a time T = T(k) such that

 $\|V(T)\|(M) \le \|V(0)\|(M) - C(k)$

for every $V \in \mathcal{V}_k$, where V(T) is the *evolution* of V = V(0) under the field H(V).

Now, let $\{\Sigma_t\}^n$ be a minimizing sequence. Then, we can define a *tighter* minimizing sequence:

Let $\Gamma_t^n := \Sigma_t^n(T)$. Then, the sequence $\{\Gamma_t\}^n$ is minimizing and each min-max sequence converges to a **stationary varifold**.



Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- 4 Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

Let $\varepsilon > 0$, $U \subset M$ and $\Sigma \subset U$. We will say that the surface Σ is ε -almost minimizing if there **does not** exist any isotopy ψ supported in U such that:

- $\mathcal{H}^2(\psi(t,\Sigma)) \leq \mathcal{H}^2(\Sigma) + \frac{\varepsilon}{8}$ for all $t \in [0,1]$.
- $\mathcal{H}^2(\psi(1,\Sigma)) \leq \mathcal{H}^2(\Sigma) \varepsilon$.

Let $\varepsilon > 0$, $U \subset M$ and $\Sigma \subset U$. We will say that the surface Σ is ε -almost minimizing if there **does not** exist any isotopy ψ supported in U such that:

•
$$\mathcal{H}^2(\psi(t,\Sigma)) \leq \mathcal{H}^2(\Sigma) + \frac{\varepsilon}{8}$$
 for all $t \in [0,1]$.

•
$$\mathcal{H}^2(\psi(1,\Sigma)) \leq \mathcal{H}^2(\Sigma) - \varepsilon$$
.

A sequence $\{\Sigma^n\}$ is almost minimizing if each Σ^n is ε_n -almost minimizing, and $\varepsilon_n \to 0$.

A B M A B M

Let $\varepsilon > 0$, $U \subset M$ and $\Sigma \subset U$. We will say that the surface Σ is ε -almost minimizing if there **does not** exist any isotopy ψ supported in U such that:

•
$$\mathcal{H}^2(\psi(t,\Sigma)) \leq \mathcal{H}^2(\Sigma) + \frac{\varepsilon}{8}$$
 for all $t \in [0,1]$.

•
$$\mathcal{H}^2(\psi(1,\Sigma)) \leq \mathcal{H}^2(\Sigma) - \varepsilon$$
.

A sequence $\{\Sigma^n\}$ is almost minimizing if each Σ^n is ε_n -almost minimizing, and $\varepsilon_n \to 0$.

Let $\mathcal{AN}(x, r)$ be the set of annuli centered in $x \in M$ with outer radius less than r.

A sequence $\{\Sigma^n\}$ is almost minimizing in small annuli if there exists $r: M \to (0, \infty)$ such that $\{\Sigma^n\}$ is almost minimizing in every $An \in \mathcal{AN}(x, r(x))$.

May - June, 2024

20/41

Alberto (Cerezo (Cid (ΊMU	JS -	UC	GR)
/ (10 CI LO)			invi c	,5	00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Let V be a stationary varifold and $U \subset M$. We say that V' is a **replacement** of V in U if:

- V' is stationary and ||V|| = ||V'||.
- V = V' on $M \setminus U$.
- $\Sigma := V'|_U$ is a embedded stable minimal surface with $\overline{\Sigma} \setminus \Sigma \in \partial U$.

Let V be a stationary varifold and $U \subset M$. We say that V' is a **replacement** of V in U if:

May - June, 2024

21/41

- V' is stationary and ||V|| = ||V'||.
- V = V' on $M \setminus U$.
- $\Sigma := V'|_U$ is a embedded stable minimal surface with $\overline{\Sigma} \setminus \Sigma \in \partial U$.

We say that V has the good replacement property if:

- V has a replacement V' in any $An \in \mathcal{AN}(x, r(x))$.
- V' has a second replacement V'' in any $An \in \mathcal{AN}(y, r(y))$.
- V'' has a third replacement V''' in any $An \in \mathcal{AN}(z, r(z))$.

If V has the good replacement property, then it is an **embedded minimal surface**.

22/41

If V has the good replacement property, then it is an **embedded minimal surface**.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence $\{\Sigma^n\}$ which is **almost minimizing** in small annuli and converges to a **stationary varifold** *V*.

If V has the good replacement property, then it is an **embedded minimal surface**.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence $\{\Sigma^n\}$ which is **almost minimizing** in small annuli and converges to a **stationary varifold** *V*. Moreover, given any small annulus An, $\Sigma^n|_{An}$ is a **smooth surface** for sufficiently large *n*.

If V has the good replacement property, then it is an **embedded minimal surface**.

Theorem 2 (Existence of a.m. min-max sequence)

There exists a min-max sequence $\{\Sigma^n\}$ which is **almost minimizing** in small annuli and converges to a **stationary varifold** *V*. Moreover, given any small annulus An, $\Sigma^n|_{An}$ is a **smooth surface** for sufficiently large *n*.

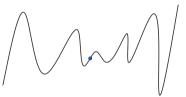
Theorem 3 (a.m. min-max sequence has GRP)

The varifold V of the previous Proposition has the good replacement property. In particular, V is an **embedded**, **minimal surface** with area $m_0(\Lambda)$.

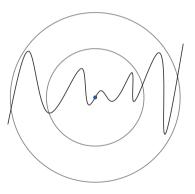
22/41

Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- 4 Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

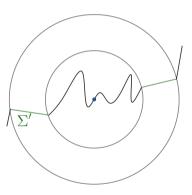


We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.



We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.

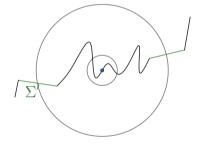
We take a good replacement V' of V in An_1 , and define $\Sigma' := V'|_{An_1}$.



We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.

We take a good replacement V' of V in An_1 , and define $\Sigma' := V'|_{An_1}$.

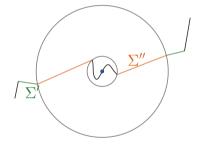
Given $s < \rho < t < 2\rho$, we consider a further replacement V'' of V' in $An_2(s) := An(x, s, t)$, and $\sum'' := V|_{An_2}$.



We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.

We take a good replacement V' of V in An_1 , and define $\Sigma' := V'|_{An_1}$.

Given $s < \rho < t < 2\rho$, we consider a further replacement V'' of V' in $An_2(s) := An(x, s, t)$, and $\Sigma'' := V|_{An_2}$.



We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.

We take a good replacement V' of V in An_1 , and define $\Sigma' := V'|_{An_1}$.

Given $s < \rho < t < 2\rho$, we consider a further replacement V'' of V' in $An_2(s) := An(x, s, t)$, and $\Sigma'' := V|_{An_2}$.

We have two surfaces Σ' and Σ'' .

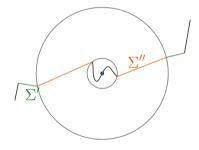


We fix some $x \in M$, $\rho > 0$ and consider the annulus $An_1 := An(x, \rho, 2\rho)$.

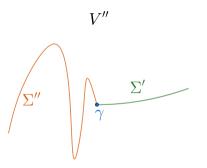
We take a good replacement V' of V in An_1 , and define $\Sigma' := V'|_{An_1}$.

Given $s < \rho < t < 2\rho$, we consider a further replacement V'' of V' in $An_2(s) := An(x, s, t)$, and $\Sigma'' := V|_{An_2}$.

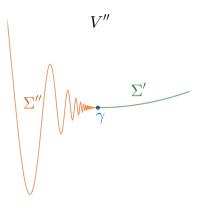
We have two surfaces Σ' and Σ'' . Do they coincide?



24/41



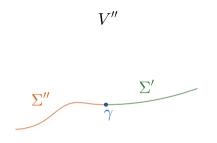
From this, we deduce that *boundary* of Σ'' meets Σ' *tangentially*.



25/41

From this, we deduce that boundary of Σ'' meets Σ' tangentially.

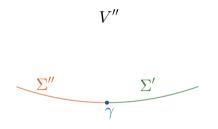
The stability of Σ'' implies better regularity: the limit of the Gauss map $\nu_{\Sigma''}$ along γ coincides with the Gauss map $\nu_{\Sigma'}$.



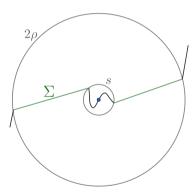
From this, we deduce that *boundary* of Σ'' meets Σ' *tangentially*.

The stability of Σ'' implies better regularity: the limit of the Gauss map $\nu_{\Sigma''}$ along γ coincides with the Gauss map $\nu_{\Sigma'}$.

By PDE theory, since Σ' , Σ'' and their Gauss maps coincide along γ , $\Sigma' \equiv \Sigma''$.



Let $\Sigma := \Sigma' \equiv \Sigma''$.



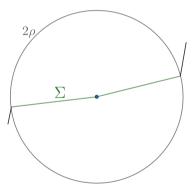
May - June, 2024	26 / 41

3

イロト イヨト イヨト

Alberto Cerezo Cid (IMUS - UGR)

Let $\Sigma := \Sigma' \equiv \Sigma''$. By our previous discussion, Σ can be extended to any $An(x, s, 2\rho)$, and even to $B^*(x, 2\rho)$.

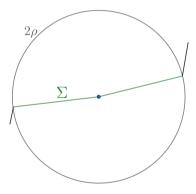


	May	- Ju	ne, 20)24			26
•	• 7	•	- E •	•	э.	▶ E	0

Let $\Sigma := \Sigma' \equiv \Sigma''$. By our previous discussion, Σ can be extended to any $An(x, s, 2\rho)$, and even to $B^*(x, 2\rho)$. In fact,

 Σ coincides with V in $B^*(x, \rho)$. More specifically,

 $\mathsf{Supp}(\|V\|) \cap B^*(x,
ho) = \Sigma \cap B^*(x,
ho)$

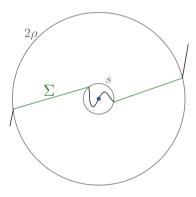


Let $\Sigma := \Sigma' \equiv \Sigma''$. By our previous discussion, Σ can be extended to any $An(x, s, 2\rho)$, and even to $B^*(x, 2\rho)$. In fact,

 Σ coincides with V in $B^*(x, \rho)$. More specifically,

 $\mathsf{Supp}(\|V\|) \cap B^*(x,
ho) = \Sigma \cap B^*(x,
ho)$

Proof: First, notice that V and V'' are **integer** rectifiable.



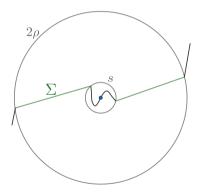
Let $\Sigma := \Sigma' \equiv \Sigma''$. By our previous discussion, Σ can be extended to any $An(x, s, 2\rho)$, and even to $B^*(x, 2\rho)$. In fact,

 Σ coincides with V in $B^*(x, \rho)$. More specifically,

 $\operatorname{Supp}(\|V\|) \cap B^*(x, \rho) = \Sigma \cap B^*(x, \rho)$

Proof: First, notice that V and V'' are **integer** rectifiable.

Let $y \in \text{Supp}(||V||) \cap B^*(x,\rho)$ s.t. V meets $\partial B(x,s)$ transversally, where s := d(x,y).



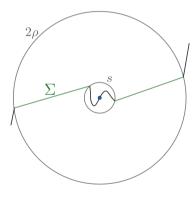
Let $\Sigma := \Sigma' \equiv \Sigma''$. By our previous discussion, Σ can be extended to any $An(x, s, 2\rho)$, and even to $B^*(x, 2\rho)$. In fact,

 Σ coincides with V in $B^*(x, \rho)$. More specifically,

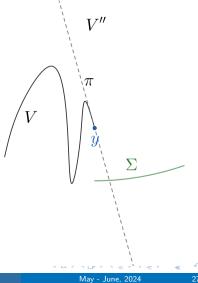
 $\operatorname{Supp}(\|V\|) \cap B^*(x,\rho) = \Sigma \cap B^*(x,\rho)$

Proof: First, notice that V and V'' are **integer** rectifiable.

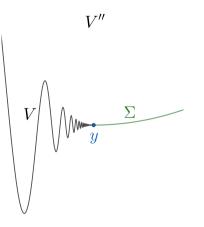
Let
$$y \in \text{Supp}(||V||) \cap B^*(x,\rho)$$
 s.t. V meets $\partial B(x,s)$ transversally, where $s := d(x,y)$. In particular, there exists a plane $\pi \in T_yM$ tangent to V .



Since V = V'' in B(x, s), π is tangent to V''.

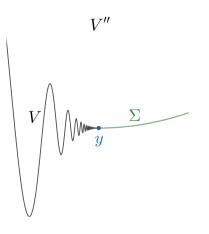


Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ !



Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ ! As a result, $y \in \Sigma$.

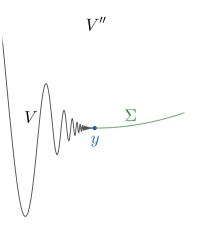
The set of points $y \in \text{Supp}(||V||) \cap B^*(x, \rho)$ transversal to $\partial B(x, s)$ is **dense**.



Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ ! As a result, $y \in \Sigma$.

The set of points $y \in \text{Supp}(||V||) \cap B^*(x, \rho)$ transversal to $\partial B(x, s)$ is **dense**.

We deduce that $\operatorname{Supp}(\|V\|) \cap B^*(x,\rho) \subseteq \overline{\Sigma} \cap B^*(x,\rho) = \Sigma \cap B^*(x,\rho).$

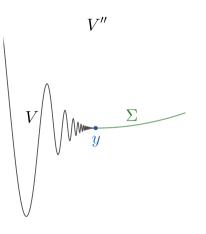


Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ ! As a result, $y \in \Sigma$.

The set of points $y \in \text{Supp}(||V||) \cap B^*(x, \rho)$ transversal to $\partial B(x, s)$ is **dense**.

We deduce that $\operatorname{Supp}(\|V\|) \cap B^*(x,\rho) \subseteq \overline{\Sigma} \cap B^*(x,\rho) = \Sigma \cap B^*(x,\rho).$

The reverse inclusion also holds, since $||V||(B^*(x, \rho)) = \mathcal{H}^2(\Sigma).$



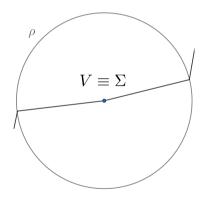
Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ ! As a result, $y \in \Sigma$.

The set of points $y \in \text{Supp}(||V||) \cap B^*(x, \rho)$ transversal to $\partial B(x, s)$ is **dense**.

We deduce that $\operatorname{Supp}(\|V\|) \cap B^*(x,\rho) \subseteq \overline{\Sigma} \cap B^*(x,\rho) = \Sigma \cap B^*(x,\rho).$

The reverse inclusion also holds, since $||V||(B^*(x, \rho)) = \mathcal{H}^2(\Sigma).$

As a result, $V|_{B^*(x,\rho)} = \Sigma$.



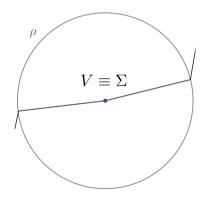
Since V = V'' in B(x, s), π is tangent to V''. By **transversality**, this means that π is tangent to Σ ! As a result, $y \in \Sigma$.

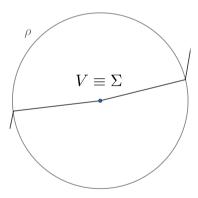
The set of points $y \in \text{Supp}(||V||) \cap B^*(x, \rho)$ transversal to $\partial B(x, s)$ is **dense**.

We deduce that $\operatorname{Supp}(\|V\|) \cap B^*(x,\rho) \subseteq \overline{\Sigma} \cap B^*(x,\rho) = \Sigma \cap B^*(x,\rho).$

The reverse inclusion also holds, since $||V||(B^*(x, \rho)) = \mathcal{H}^2(\Sigma).$

As a result,
$$V|_{B^*(x,\rho)} = \Sigma$$
. Now, can we extend Σ smoothly to x?

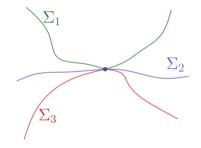




Stability shows that near x, there are minimal Lipschitz graphs Σ_i and constants m_i , $1 \le i \le N$ with $\sum m_i = M$ and

$$\Sigma = \sum m_i \Sigma_i$$

near x. Moreover, Σ_i are ordered by height.

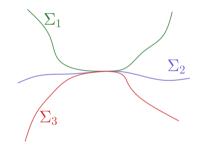


Stability shows that near x, there are minimal Lipschitz graphs Σ_i and constants m_i , $1 \le i \le N$ with $\sum m_i = M$ and

$$\Sigma = \sum m_i \Sigma_i$$

near x. Moreover, Σ_i are ordered by height.

By Allard's regularity Theorem, each Σ_i extends smoothly to x.



Stability shows that near x, there are minimal Lipschitz graphs Σ_i and constants m_i , $1 \le i \le N$ with $\sum m_i = M$ and

$$\Sigma = \sum m_i \Sigma_i$$

near x. Moreover, Σ_i are ordered by height.

By Allard's regularity Theorem, each Σ_i extends smoothly to x.

Stability shows that near x, there are minimal Lipschitz graphs Σ_i and constants m_i , $1 \le i \le N$ with $\sum m_i = M$ and

$$\Sigma = \sum m_i \Sigma_i$$

near x. Moreover, Σ_i are ordered by height.

By Allard's regularity Theorem, each Σ_i extends smoothly to x. By the maximum principle, N = 1, and Σ is **embedded**.

Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- 4 Finding stationary varifolds
- Regularity analysis of limit varifolds
 Theorem 1: GRP implies minimality
 Theorem 2: Existence of a.m. min-max sequence
 Theorem 3: a.m. min-max sequence has GRP

- It converges to a stationary varifold,
- **②** For sufficiently small annuli An, $\Sigma^n|_{An}$ is a **smooth** surface,
- It is almost minimizing in small annuli.

- It converges to a stationary varifold,
- **②** For sufficiently small annuli An, $\Sigma^n|_{An}$ is a **smooth** surface,
- It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous minimizing sequence, so (1) holds.

- It converges to a stationary varifold,
- **②** For sufficiently small annuli An, $\Sigma^n|_{An}$ is a **smooth** surface,
- It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous minimizing sequence, so (1) holds.

(2) also holds: we know that each $\{\Sigma^n\}$ is smooth except on a finite set $\mathcal{P}^n = \{P_i^n\}_{1 \le i \le N}$. Up to a subsequence, each P_i^n converges to a certain P_i .

▶ 4 ∃ ▶ ∃ • 9 Q (?)

- It converges to a stationary varifold,
- **②** For sufficiently small annuli An, $\Sigma^n|_{An}$ is a **smooth** surface,
- It is almost minimizing in small annuli.

Sketch of the proof: We will find this almost minimizing min-max sequence in our previous minimizing sequence, so (1) holds.

(2) also holds: we know that each $\{\Sigma^n\}$ is smooth except on a finite set $\mathcal{P}^n = \{P_i^n\}_{1 \le i \le N}$. Up to a subsequence, each P_i^n converges to a certain P_i .

We deduce that there is r = r(x) such that every annulus An with outer radius less than r(x) does not contain any P_i nor P_i^n for large n.

Finding an almost minimizing min-max sequence

Let CO be the set of pairs (U_1, U_2) such that

 $d(U_1, U_2) \geq 2\min\{diam(U_1), diam(U_2)\}.$

Finding an almost minimizing min-max sequence

Let \mathcal{CO} be the set of pairs (U_1, U_2) such that

```
d(U_1, U_2) \ge 2 \min\{diam(U_1), diam(U_2)\}.
```

We will say that Σ is ε -a.m. in (U_1, U_2) if it is ε -a.m. in one of the two sets.

Finding an almost minimizing min-max sequence

Let \mathcal{CO} be the set of pairs (U_1, U_2) such that

 $\mathsf{d}(U_1, U_2) \geq 2\min\{\mathit{diam}(U_1), \mathit{diam}(U_2)\}.$

We will say that Σ is ε -a.m. in (U_1, U_2) if it is ε -a.m. in one of the two sets. Assume that the following Proposition holds:

There exists a min-max (sub)sequence $\{\Sigma^L\}$ such that Σ^L is 1/L-a.m. in every $(U_1, U_2) \in CO$

Let CO be the set of pairs (U_1, U_2) such that

 $d(U_1, U_2) \ge 2 \min\{diam(U_1), diam(U_2)\}.$

We will say that Σ is ε -a.m. in (U_1, U_2) if it is ε -a.m. in one of the two sets. Assume that the following Proposition holds:

There exists a min-max (sub)sequence $\{\Sigma^L\}$ such that Σ^L is 1/L-a.m. in every $(U_1, U_2) \in \mathcal{CO}$

Proof of Theorem 2: Consider the pairs $(B_r(x), M \setminus B_r(x))$. Then, either

- there exists r > 0 s.t. a subsequence $\{\Sigma^{L(j)}\}$ is 1/L-a.m. in $B_r(x)$ for all x,
- There is a subsequence $\{\Sigma^{L(j)}\}$, $r_j \to 0$ and $x_j \to x^*$ such that $\Sigma^{L(j)}$ is 1/L-a.m. in $M \setminus B_{r_j}(x_j)$.

Let \mathcal{CO} be the set of pairs (U_1, U_2) such that

 $\mathsf{d}(U_1, U_2) \geq 2\min\{\mathit{diam}(U_1), \mathit{diam}(U_2)\}.$

We will say that Σ is ε -a.m. in (U_1, U_2) if it is ε -a.m. in one of the two sets. Assume that the following Proposition holds:

There exists a min-max (sub)sequence $\{\Sigma^L\}$ such that Σ^L is 1/L-a.m. in every $(U_1, U_2) \in CO$

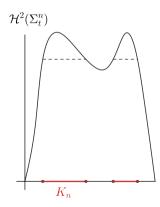
Proof of Theorem 2: Consider the pairs $(B_r(x), M \setminus B_r(x))$. Then, either

- there exists r > 0 s.t. a subsequence $\{\Sigma^{L(j)}\}$ is 1/L-a.m. in $B_r(x)$ for all x,
- There is a subsequence $\{\Sigma^{L(j)}\}$, $r_j \to 0$ and $x_j \to x^*$ such that $\Sigma^{L(j)}$ is 1/L-a.m. in $M \setminus B_{r_j}(x_j)$.

In any of the cases, we obtain a min max subsequence $\{\Sigma^{L(j)}\}$ which is a.m. in small annuli.

Let $L \in \mathbb{N}$, and

$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

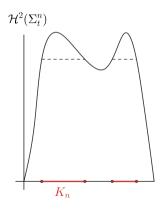


э

Let $L \in \mathbb{N}$, and

$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

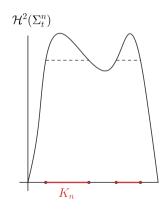
If for some n > L, $t \in K_n$, Σ_t^n is 1/L-a.m., then $\Sigma^L := \Sigma_t^n$.



Let $L \in \mathbb{N}$, and

$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

If for some n > L, $t \in K_n$, Σ_t^n is 1/L-a.m., then $\Sigma^L := \Sigma_t^n$. Otherwise, we **argue by contradiction**: for sufficiently large n, every Σ_t^n , $t \in K_n$ is **not** 1/L-a.m. in some $(U_t^n, V_t^n) \in CO$.

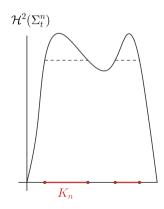


Let $L \in \mathbb{N}$, and

$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

If for some n > L, $t \in K_n$, Σ_t^n is 1/L-a.m., then $\Sigma^L := \Sigma_t^n$. Otherwise, we **argue by contradiction**: for sufficiently large n, every Σ_t^n , $t \in K_n$ is **not** 1/L-a.m. in some $(U_t^n, V_t^n) \in CO$.

We can find at least two isotopies ψ_U and ψ_V which decrease the area of \sum_t^n with small increase in the process.



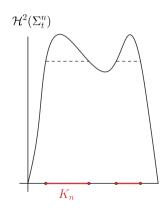
Let $L \in \mathbb{N}$, and

$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

If for some n > L, $t \in K_n$, Σ_t^n is 1/L-a.m., then $\Sigma^L := \Sigma_t^n$. Otherwise, we **argue by contradiction**: for sufficiently large n, every Σ_t^n , $t \in K_n$ is **not** 1/L-a.m. in some $(U_t^n, V_t^n) \in CO$.

We can find at least two isotopies ψ_U and ψ_V which decrease the area of \sum_t^n with small increase in the process.

By continuity, these isotopies also decrease the area of \sum_{s}^{n} for s in a neighbourhood I of t.



Let $L \in \mathbb{N}$, and

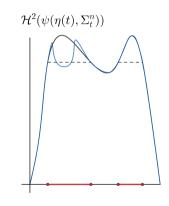
$$K_n := \{t \in [0,1] : \mathcal{H}^2(\Sigma_t^n) \ge m_0(\Lambda) - 1/L\}.$$

If for some n > L, $t \in K_n$, Σ_t^n is 1/L-a.m., then $\Sigma^L := \Sigma_t^n$. Otherwise, we **argue by contradiction**: for sufficiently large n, every Σ_t^n , $t \in K_n$ is **not** 1/L-a.m. in some $(U_t^n, V_t^n) \in CO$.

We can find at least two isotopies ψ_U and ψ_V which decrease the area of \sum_t^n with small increase in the process.

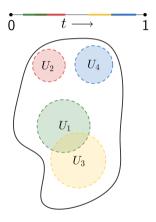
By continuity, these isotopies also decrease the area of \sum_{s}^{n} for s in a neighbourhood I of t.

Idea: apply one of the isotopies ψ_U, ψ_V along *I*.



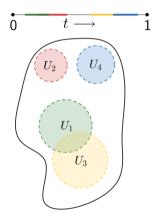
32 / 41

Now, we take a finite cover $\{I_j\}_{1 \le j \le N}$ of K_n by some of these intervals, each associated with an isotopy $\psi_j(\eta_j, \cdot)$ supported in U_j .



Now, we take a finite cover $\{I_j\}_{1 \le j \le N}$ of K_n by some of these intervals, each associated with an isotopy $\psi_j(\eta_j, \cdot)$ supported in U_j . We can find a cover s.t.:

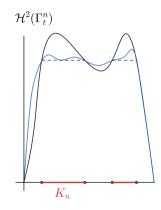
- $I_j \cap I_k = \emptyset$ unless |j k| = 1.
- The sets U_j , U_{j+1} are **disjoint** if $I_j \cap I_{j+1}$ overlap.
- For all $t \in K_n$, one of the $\eta_j(t)$ is 1.



Proof of the Proposition

Now, we take a finite cover $\{I_j\}_{1 \le j \le N}$ of K_n by some of these intervals, each associated with an isotopy $\psi_j(\eta_j, \cdot)$ supported in U_j . We can find a cover s.t.:

- $I_j \cap I_k = \emptyset$ unless |j k| = 1.
- The sets U_j , U_{j+1} are **disjoint** if $I_j \cap I_{j+1}$ overlap.
- For all $t \in K_n$, one of the $\eta_j(t)$ is 1.



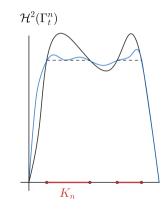
Proof of the Proposition

Now, we take a finite cover $\{I_j\}_{1 \le j \le N}$ of K_n by some of these intervals, each associated with an isotopy $\psi_j(\eta_j, \cdot)$ supported in U_j . We can find a cover s.t.:

- $I_j \cap I_k = \emptyset$ unless |j k| = 1.
- The sets U_j , U_{j+1} are **disjoint** if $I_j \cap I_{j+1}$ overlap.
- For all $t \in K_n$, one of the $\eta_j(t)$ is 1.

After applying the isotopies $\psi(\eta_j(t), \cdot)$ to $\{\Sigma_t^n\}$, we obtain a new family Γ_t^n satisfying:

 $\mathcal{F}({\{\Gamma_t^n\}}) \leq \mathcal{F}({\{\Sigma_t^n\}}) - 1/2L.$



Proof of the Proposition

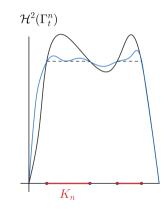
Now, we take a finite cover $\{I_j\}_{1 \le j \le N}$ of K_n by some of these intervals, each associated with an isotopy $\psi_j(\eta_j, \cdot)$ supported in U_j . We can find a cover s.t.:

- $I_j \cap I_k = \emptyset$ unless |j k| = 1.
- The sets U_j , U_{j+1} are **disjoint** if $I_j \cap I_{j+1}$ overlap.
- For all $t \in K_n$, one of the $\eta_j(t)$ is 1.

After applying the isotopies $\psi(\eta_j(t), \cdot)$ to $\{\Sigma_t^n\}$, we obtain a new family Γ_t^n satisfying:

 $\mathcal{F}(\{\Gamma_t^n\}) \leq \mathcal{F}(\{\Sigma_t^n\}) - 1/2L.$

In particular, $\lim_{n} \mathcal{F}(\{\Gamma_{t}^{n}\}) \leq m_{0}(\Lambda) - 1/2L!!$



Introduction and motivation

- 2 Statement of the main Theorem
- 3 An (unfortunately irreductible) introduction to varifolds
- 4 Finding stationary varifolds
- 5 Regularity analysis of limit varifolds
 - Theorem 1: GRP implies minimality
 - Theorem 2: Existence of a.m. min-max sequence
 - Theorem 3: a.m. min-max sequence has GRP

Let \mathcal{I} be a set of smooth isotopies on M and Σ be a surface. We say that $\{\psi^k(1,\Sigma)\} \subset \mathcal{I}$ is **minimizing** for (Σ, \mathcal{I}) if

$$\lim_k \mathcal{H}^2(\psi^k(1,\Sigma)) = \inf_{\psi\in\mathcal{I}} \mathcal{H}^2(\psi(1,\Sigma)).$$

Let \mathcal{I} be a set of smooth isotopies on M and Σ be a surface. We say that $\{\psi^k(1,\Sigma)\} \subset \mathcal{I}$ is **minimizing** for (Σ, \mathcal{I}) if

$$\lim_k \mathcal{H}^2(\psi^k(1,\Sigma)) = \inf_{\psi\in\mathcal{I}} \mathcal{H}^2(\psi(1,\Sigma)).$$

Given $U \subset M$ and an **embedded** surface Σ , we define:

- $\Im \mathfrak{s}(U)$: the set of all smooth isotopies supported in U.
- $\Im \mathfrak{s}_j(U) := \{ \psi \in \Im \mathfrak{s}(U) : \mathcal{H}^2(\psi(t, \Sigma)) \leq \mathcal{H}^2(\Sigma) + \frac{1}{8j} \}.$

Let \mathcal{I} be a set of smooth isotopies on M and Σ be a surface. We say that $\{\psi^k(1,\Sigma)\} \subset \mathcal{I}$ is **minimizing** for (Σ, \mathcal{I}) if

$$\lim_k \mathcal{H}^2(\psi^k(1,\Sigma)) = \inf_{\psi\in\mathcal{I}} \mathcal{H}^2(\psi(1,\Sigma)).$$

Given $U \subset M$ and an **embedded** surface Σ , we define:

- $\Im \mathfrak{s}(U)$: the set of all smooth isotopies supported in U.
- $\Im \mathfrak{s}_j(U) := \{ \psi \in \Im \mathfrak{s}(U) : \mathcal{H}^2(\psi(t, \Sigma)) \leq \mathcal{H}^2(\Sigma) + \frac{1}{8j} \}.$

Theorem (Meeks-Simon-Yau)

Let $\{\Sigma^k\} \subset \mathfrak{Is}(U)$ be minimizing and converging to a varifold V. Then, $V|_U$ is an stable, embedded, minimal surface.

Let $\{\Sigma^j\}$ be the a.m. min-max sequence obtained in Theorem 2, which converges to a stationary varifold V.

э

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property.

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the previous Proposition, V^* is a replacement in An.

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the previous Proposition, V^* is a replacement in An.

We can define a diagonal sequence $\{\Sigma^{j,k(j)}\}$ which is almost minimizing and converges to the stationary varifold V^* .

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the previous Proposition, V^* is a replacement in An.

We can define a diagonal sequence $\{\Sigma^{j,k(j)}\}$ which is almost minimizing and converges to the stationary varifold V^* . We apply again the Lemma B and Proposition to construct a further replacement V^{**} .

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Any limit V^* of a subsequence of $\{V^j\}$ is a replacement for V in An.

Proof of Theorem 3: we will prove that V satisfies the good replacement property. By the previous Proposition, V^* is a replacement in An.

We can define a diagonal sequence $\{\Sigma^{j,k(j)}\}$ which is almost minimizing and converges to the stationary varifold V^* . We apply again the Lemma B and Proposition to construct a further replacement V^{**} . Iterating the argument, we find a third replacement V^{***} .

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is: • $V^* = V$ in $M \setminus An$:

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is: • $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is:

- $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.
- $V^*|_{An}$ is stable, embedded and minimal:

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is: • $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.

• $V^*|_{An}$ is stable, embedded and minimal: true, since the $V^j|_{An}$ are (Schoen's estimate).

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is:

- $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.
- V*|_{An} is stable, embedded and minimal: true, since the V^j|_{An} are (Schoen's estimate).
 ||V|| = ||V*||:

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_j V^j$ is a replacement for V in An, that is: • $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.

- $V^*|_{An}$ is stable, embedded and minimal: true, since the $V^j|_{An}$ are (Schoen's estimate).
- $\|V\| = \|V^*\|$: Σ^j is 1/j-a.m., so $\|V^*\| = \lim_j \|V^j\| \ge \lim_j \mathcal{H}^2(\Sigma^j) 1/j = \|V\|$.

< ⊒ >

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_{j \to 0} V^j$ is a replacement for V in An, that is:

- $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.
- $V^*|_{An}$ is stable, embedded and minimal: true, since the $V^j|_{An}$ are (Schoen's estimate).
- $\|V\| = \|V^*\|$: Σ^j is 1/j-a.m., so $\|V^*\| = \lim_j \|V^j\| \ge \lim_j \mathcal{H}^2(\Sigma^j) 1/j = \|V\|$.
- V^{*} is stationary:

Let $An \in \mathcal{AN}(x, r(x))$ be a small annulus. For each j, let $\{\Sigma^{j,k}\}^k$ be minimizing for $(\Sigma^j, \Im \mathfrak{s}_j(An))$ and converging to a varifold V^j . Then, $V^j|_{An}$ is a stable, embedded, minimal surface.

Proof of the Proposition: we show that $V^* = \lim_{j \to 0} V^j$ is a replacement for V in An, that is:

- $V^* = V$ in $M \setminus An$: true, since $V^j \equiv V$ outside An.
- $V^*|_{An}$ is stable, embedded and minimal: true, since the $V^j|_{An}$ are (Schoen's estimate).
- $\|V\| = \|V^*\|$: Σ^j is 1/j-a.m., so $\|V^*\| = \lim_j \|V^j\| \ge \lim_j \mathcal{H}^2(\Sigma^j) 1/j = \|V\|$.
- V^* is stationary: Otherwise, the V^j 's could not be the limit of a minimization problem.

• • = •

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using replacements. Let $An^* \in \mathcal{AN}(x, \varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\Im \mathfrak{s}(An^*)$.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x,\varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* ,

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x,\varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* , and so is $W = \lim_k W^k$.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x,\varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* , and so is $W = \lim_k W^k$. By Lemma A, $\Sigma^{k,l}$ belong to $\mathfrak{Is}_i(B_{2\varepsilon})$.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x,\varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* , and so is $W = \lim_k W^k$. By Lemma A, $\Sigma^{k,l}$ belong to $\mathfrak{Is}_j(B_{2\varepsilon})$. We deduce that W is a replacement for V'.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x, \varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* , and so is $W = \lim_k W^k$. By Lemma A, $\Sigma^{k,l}$ belong to $\mathfrak{Is}_j(B_{2\varepsilon})$. We deduce that W is a replacement for V'.

We can now define a diagonal sequence $\{\Sigma^{k,l(k)}\}^k$ converging to W. Applying Lemma A, we obtain a second replacement.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$.

Proof of Lemma B: we show that V' is a minimal surface using **replacements**.

Let $An^* \in \mathcal{AN}(x,\varepsilon)$ and $\{\Sigma^{k,l}\}^l$ be minimizing for $\mathfrak{Is}(An^*)$. By [MSY], the limit W^k is **minimal** in An^* , and so is $W = \lim_k W^k$. By Lemma A, $\Sigma^{k,l}$ belong to $\mathfrak{Is}_j(B_{2\varepsilon})$. We deduce that W is a replacement for V'.

We can now define a diagonal sequence $\{\Sigma^{k,l(k)}\}^k$ converging to W. Applying Lemma A, we obtain a second replacement. Iterating this process, we deduce the good replacement property.

Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_j(B_{2\varepsilon}(x))$. Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_i(B_{2\varepsilon}(x))$.

Proof: Let $\psi(t, x)$ be an isotopy which squeezes the ball $B_{\varepsilon}(x)$ in $B_{2\varepsilon}(x)$ with scale factor (1 - t).

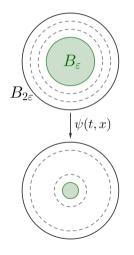


Let $x \in An$ and k large enough. There exists $\varepsilon > 0$ s.t. any isotopy $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$ can be achieved via an isotopy $\Phi \in \mathfrak{Is}_i(B_{2\varepsilon}(x))$.

Proof: Let $\psi(t, x)$ be an isotopy which squeezes the ball $B_{\varepsilon}(x)$ in $B_{2\varepsilon}(x)$ with scale factor (1 - t).

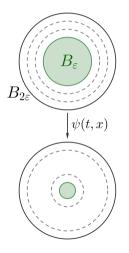
For large enough k, we can find a certain $\psi(t, x)$ satisfying

$$\mathcal{H}^2(\psi(t,\Sigma^k)) \leq \mathcal{H}^2(\Sigma^k) + C\varepsilon^2.$$



Now, given $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$, let Φ be the isotopy which applies this process:

- First, it squeezes B_ε via ψ(t, x) up to a certain factor (1 − t₀).
- Then, it applies the isotopy φ on the squeezed ball B_{(1-t₀)ε}(x).
- Finally, it enlarges $B_{\varepsilon}(x)$ by applying $\psi(t,x)$ reversely.

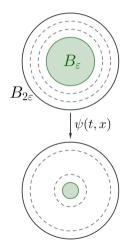


40 / 41

Now, given $\varphi \in \mathfrak{Is}(B_{\varepsilon}(x))$, let Φ be the isotopy which applies this process:

- First, it squeezes B_ε via ψ(t, x) up to a certain factor (1 − t₀).
- Then, it applies the isotopy φ on the squeezed ball B_{(1-t₀)ε}(x).
- Finally, it *enlarges* $B_{\varepsilon}(x)$ by applying $\psi(t, x)$ reversely.

 $\varphi(1,x) \equiv \Phi(1,x)$. Moreover, if t_0 is sufficiently close to 1, $\Phi(t,x) \in \Im \mathfrak{s}_j(B_{2\varepsilon}(x))$.



Thank you for your attention!

Grant PID2020-118137GB-I00 funded by:

▶ < ⊒ ▶